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The relevance of non-equilibrium phenomena, nonlinear behavior, gravitational effects and fluid 
compressibility in a wide range of problems related to high-temperature gas-dynamics, especially in 
thermal, mechanical and nuclear engineering, calls for a concerted approach using the tools of the 
kinetic theory of gases, statistical physics, quantum mechanics, thermodynamics and mathematical 
modeling in synergy with advanced numerical strategies for the solution of the Navier-Stokes 
equations. The reason behind such a need is that in many instances of relevance in this field one 
witnesses a departure from canonical models and the resulting inadequacy of standard CFD 
approaches, especially those traditionally used to deal with thermal (buoyancy) convection 
problems. Starting from microscopic considerations and typical concepts of molecular dynamics, 
passing through the Boltzmann equation and its known solutions, we show how it is possible to 
remove past assumptions and elaborate an algorithm capable of targeting the broadest range of 
applications. Moving beyond the Boussinesq approximation, the Sutherland law and the principle of 
energy equipartition, the resulting method allows most of the fluid properties (density, viscosity, 
thermal conductivity, heat capacity and diffusivity, etc.) to be derived in a rational and natural way 
while keeping empirical contamination to the minimum. Special attention is deserved as well to the 
well-known pressure issue. With the application of the socalled multiple pressure variables concept 
and a projection-like numerical approach, difficulties with such a term in the momentum equation 
are circumvented by allowing the hydrodynamic pressure to decouple from its thermodynamic 
counterpart. The final result is a flexible and modular framework that on the one hand is able to 
account for all the molecule (translational, rotational and vibrational) degrees of freedom and their 
effective excitation, and on the other hand can guarantee adequate interplay between molecular and 
macroscopic-level entities and processes. Performances are demonstrated by computing some 
incompressible and compressible benchmark test cases for thermal (gravitational) convection, 
which are then extended to the high-temperature regime taking advantage of the newly developed 
features.  
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1. Introduction 

 

Variable density flows occurring at low Mach number are encountered in several physical 

phenomena. Applications involving such flows abound in the fields of thermal, mechanical, 

chemical, civil and nuclear engineering. Many industrial (and also nonindustrial) applications in 

heat transfer have directly or indirectly engaged with research in these fields. 

As an example, the “natural” motion of gases in enclosures with different aspect ratios is relevant to 

various engineering areas such as heat transfer from electronic packaging (Sun and Jaluria [1]), 
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furnace engineering (Baltasar et al. [2]), the production of semiconductor and optoelectronics 

materials (where the processing itself requires that the high-temperature melt is in contact with a 

gas, e.g., the Bridgman, CZ and Floating Zone methods, Lappa and Savino [3]; Lappa [4] and 

references therein). 

Low-Mach-number natural flows of compressible gases play a key role in numerous other 

technological contexts, such as the cooling of high-power devices, solar energy and nuclear power 

plants (von Backström and Gannon [5]; Elmo and Cioni [6]; Hu et al.[7]; Martineau et al. [8]). 

Other relevant examples include (but are not limited to) plumes from urban mass fires, the release 

in the atmosphere of smokes from industrial stacks (McGrattan et al. [9]), plumes resulting from 

nuclear explosions and pyroclastic flows from volcanic eruptions (Valentine and Wohletz [10]). 

In spite of considerable research and efforts on such topics, a clear and urgent need does exist to 

develop new strategies to attack these problems.  

First of all, the vast majority of natural convection calculations that have been reported in the 

literature have been performed after invoking the Oberbeck–Boussinesq (OB) approximation (see, 

e.g., Lappa [11,12]). This approximation relies on a first-order Taylor series to approximate the 

density variations according to the difference between local temperature and a reference 

temperature.  More precisely, it ignores the temperature dependence of all fluid properties, except 

for the temperature-induced density variation that is retained in the buoyant force driving the flow. 

This philosophy is highly effective if density variations are low. Nevertheless, neglecting the 

importance of density variations in thermal flows of gravitational nature with strong temperature 

differences can cause a considerable departure from the correct prediction of fluid flow behavior 

(non-Oberbeck–Boussinesq (NOB) effects inevitably arise).  

For large temperature differences, the Boussinesq assumption breaks down (Gray and Giorgini [13]) 

and, in order to capture NOB effects, one needs to resort to a compressible flow model, or since the 

Mach number remains small, to a low Mach number approximation model.  

 

2. A review of existing algorithms 

 

As explained in Munz et al. [14] and Beccantini et al. [15], the main difficulty in constructing 

numerical methods for low-speed compressible flows is the fact that, in the transition from 

compressible to incompressible flows, the governing equations change nature. The popular Euler 

equations for compressible flows are hyperbolic in nature, but they become hyperbolic-elliptic as 

the characteristic flow speed becomes zero compared with the sound speed (i.e. in the limit as the 

Mach number tends to zero). 

The strategies elaborated over the years to deal with such a complex issue can be roughly divided 

into two main categories: the so-called density-based solvers and the pressure-based methods, 

which in turn have given rise to two lines of inquiry running in parallel in the literature. 

The first category consists of variants of methods originally conceived to deal with the compressible 

Navier-Stokes equations. It is well known that such methods in their original fully-compressible 
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formulation cannot be used to compute flows at low Mach regime without major modification. The 

reason is the existence of a large disparity between the eigenvalues of the Euler equations (Turkel 

[16]). In the last two decades, different techniques have been developed to extend these solvers to 

the quasi-incompressible regime, based on the modification of the time-dependent properties of the 

governing equations (to cluster the otherwise poorly distributed eigenvalues of the Euler equations) 

or on alternate forms of the related integration strategies (Volpe [17]; Guillard and Viozat [18]; 

Mary et al. [19]; Paillere et al. [20]; Vierendeels et al. [21]; Parchevsky [22]; Martineau et al. [8]; 

Könözsy and Drikakis [23]). The resulting solvers often allow the simulation of flows ranging from 

supersonic to low Mach number regime, including aeroacoustics and natural thermal flows.  

The second category includes techniques derived from standard methods for incompressible flows 

(see, e.g., the excellent methods by Kothe et al. [24]) properly extended to the compressible regime. 

The main distinguishing mark of this approach is the selection of pressure as a dependent variable 

in preference to density, such a choice being motivated  by the significant changes experienced by 

pressure at low Mach numbers as opposed to variations in density (which become very small, 

Moukalled, and Darwish [25]). 

These techniques are known under several names: projection method, fractional-step method or 

pressure-correction method (also simply referred to as primitive-variables methods). This approach 

was originally introduced by Harlow and Welch [26] and Welch et al. [27] as the MAC method, and 

successively modified in the projection method developed independently by Chorin [28] and 

Temam [29,30]. Despite some minor differences, basically, a common feature of all these methods 

is that they are conceived to “turn around” the coupling between the pressure and the velocity that is 

implied by the incompressibility constraint. Related variants for compressible flows have been 

elaborated by extending the related principles to non-divergence free velocity flows (basically, from 

a purely mathematical point of view, they rely on the Ladyzhenskaya decomposition theorem, 

Ladyzhenskaya [31], which states that any vector function can be decomposed into a part of given 

divergence plus the gradient of a scalar potential).  

Obviously, each of the two main theoretical frameworks discussed above has its own advantages 

and disadvantages, strengths and weaknesses. 

In the first case (density-based solvers), the major difficulty is related to the large differences 

existing from a physical point of view between the acoustic and convective scales (see, e.g., 

Gauthier. [32]). The low Mach number regime is characterized by a large discrepancy between the 

flow velocity and the speed of sound, leading to physical effects on different length scales and of 

different orders of magnitude, which can greatly reduce the accuracy of the solver (if no specific 

countermeasures are undertaken see, e.g., Casulli and Greenspan [33]). 

Moreover, computations using fully compressible Navier-Stokes equations with explicit methods, 

in general, require very small time-steps for matching stability conditions, which make them 

unsuitable for computing slowly-evolving (e.g. natural) convective flows.  

On the other hand, pressure-based methods are not free of bottlenecks. With such methods, pressure 

is always computed implicitly, for example, as the solution of a Poisson-like equation. Because this 
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equation in its original form exhibits elliptic behavior, it cannot mimic the hyperbolic nature of 

compressible flow, which is a major source of problems in using these methods in the compressible 

regime. 

As a natural consequence, a variety of hybrid methods have been elaborated over the last 10-15 

years trying to incorporate the main benefits coming from one or the other philosophy. 

Regardless of specific differences, in general, a common prerequisite (a necessary condition) for the 

elaboration of all such variants has been represented by the availability of asymptotic analyses 

addressing the low Mach number “limit” behavior of the compressible balance equations and 

related solutions.  

A first step in this direction was undertaken by Paolucci [34] and Majda and Sethian [35]. The latter 

authors presented a limiting system of equations to describe combustion processes at low Mach 

number in either confined or unbounded regions and numerically solved these equations for the case 

of a flame propagating in a closed vessel. Thereby, they showed that this simplified system of 

equations could account for large heat release, substantial temperature and density variations, as 

well as substantial interaction with the flow field. Such a system was much simpler than the 

complete system of equations of compressible reacting gas flow since the detailed effects of 

acoustic waves had been removed (the reader is referred to the similar work by Paolucci [34] for the 

analogous case of a nonreacting flow).  

Klein [36] presented an asymptotic analysis of the Euler equations in the limit of vanishing Mach 

number, specifically conceived to extend the validity of numerical methods from the compressible 

to the low Mach number regime. Later, Meister [37] provided a rigorous mathematical justification 

of this asymptotic investigation. 

On the analytical side, another development worth of attention is the study by Roller and Munz 

[38]. Their single time scale, multiple space scale asymptotic analysis shows that “the pressure” can 

be decomposed into three parts with different physical meanings, these accounting separately for 

thermodynamic effects, acoustic wave propagation and the balance of forces (pressure dynamics 

effect).  

All such knowledge has led to the development of methods specifically relying on the possibility to 

filter out some undesired effects while retaining other physical phenomena of interest. The so-called 

multiple-pressure-variables (MPV) numerical techniques pertain to this category (where ideas and 

numerical strategies derived directly from the multiple scale asymptotics have been used to allow 

accurate capturing of various physical phenomena which are operative on very different length 

scales). This approach has been used in different ways displaying great versatility and reliability. 

Another milestone work, on which several numerical approaches would successively rely, was the 

study by Müller [39]. His multiple-time scale, single-space scale asymptotic analysis of the 

compressible Navier-Stokes equations could reveal how the heat-release rate and heat conduction 

affect the zeroth-order global thermodynamic pressure, the divergence of velocity and the material 

change of density at low-Mach-numbers. In this analysis, the acoustic time change of the heat-

release rate was identified as the dominant source of sound in low-Mach-number flow. It was also 
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clarified that the viscous and buoyancy forces enter the computation of the second-order 

“incompressible” pressure in low-Mach-number flow in a similar way as they enter the pressure 

computation in incompressible flow (except for the aforementioned nonzero velocity-divergence 

constraint). Removing acoustics from the equations altogether was shown to lead to the low-Mach-

number equations, which allow for large temperature and density changes as opposed to the 

Boussinesq equations, as already shown by Paolucci [34] and Majda and Sethian [35]. 

Among other things, by the above discussion it becomes also evident that such a pressure splitting 

approach is at the root of many of the variants derived by the extension to the compressible regime 

of projection (or fractional) techniques originally introduced to deal with incompressible flow. 

Relevant and excellent examples along these lines are Chenoweth and Paolucci [40], Fröhlich  and 

Gauthier [41], Crockera and Paranga [42], Cook and Riley [43], Nicoud [44], Hung and Cheng [45], 

Munz et al. [14], Park and Munz [46], Weisman et al. [47], Beccantini et al. [15], Benteboula and 

Lauriat [48], Bouloumou et al. [49]. Although the specifics of the techniques used by these authors 

vary, the basic idea is the same. Further worthy theoretical and numerical studies are in progress at 

the time of submission of the present paper. 

In Munz et al. [14] it is stated that, in general, these methods are more robust than density-based 

solvers. Nevertheless, it is obvious that the range of validity of pressure-based solvers arising from 

asymptotics is in general more limited than the range of validity of density-based solver (which can 

be used in principle to compute flows at all speeds). 

In such a context, another (non-trivial) distinction must be invoked between time-marching 

algorithms and methods conceived to provide directly the steady state. Indeed, the popular topic of 

extending incompressible numerical formulations to the compressible or variable density regime, 

has originated a parallel branch of inquiry attempting to develop general strategies for compressible 

flow through minor modifications of algorithms working with the incompressible steady Navier-

Stokes equations (the socalled SIMPLE class of algorithms). Examples pertaining to this branch are 

Van Doormal et al. [50], Karki and Patankar [51], Shyy et al. [52], Demirdzic et al. [53], Kobayashi 

and Pereira [54], Darbandi and Schneider [55], Becker and Braack [56], Heuveline [57], Darbandi 

and Hosseinizadeh [58-61]. These methods share with the time-marching analogues some 

fundamental characteristics (see, e.g., Bijl and Wesseling [62]), among them, the use of staggered 

grids and the derivation of velocities and pressure in a segregated way (by solving separately the 

momentum equations and a specific Poisson-like equation for pressure, respectively). The 

linearization of the balance equation and the approach used to solve the resulting linearized 

algebraic equations are the essential factors determining the performance of these numerical 

methods, though some attention has to be also paid to mass conservation issues and related physical 

connections with the behavior of pressure (Mazumder [63]). This parallel branch of development of 

numerical methods has led to important results deserving attention as well. 
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3. Thermal convection in gases at very high temperatures 

 

This review of literature shows that really an impressive effort has been devoted to expand the 

range of applicability of existing methods and techniques to the general problem of low-speed 

compressible flows, in which compressible thermal convection is just one effective realization. 

Many directions of research have been undertaken and several useful generalizations have been 

made. Most surprisingly, however, efforts towards an adequate modeling and the related 

development of a numerical framework to account for the phenomena which characterize thermal 

convection at very high temperatures seem to be very rare and limited.  

Compressibility effects due to the very large temperature differences considered (Gray and Giorgini 

[13]) are not the only sources of departure from standard behaviors. A high value of temperature 

can be a source of problems per se regardless of whether it undergoes strong variations through the 

domain, or not. At very high temperatures several effects conspire to make traditional models and 

standard CFD techniques inadequate and not suitable for treating these subjects. 

By “very high temperatures” we mean here one or more characteristic thresholds above which the 

standard concepts of the kinetic theory of gases (derived from classical mechanics) are no longer 

applicable. Among them: the principle of energy equipartition and the concept of fully excited 

molecular degrees of freedom. Such assumptions are at the basis of most of existing mathematical 

models, conveniently used by investigators to allow for relatively simple representations of the heat 

capacity coefficients. Similar arguments apply to the Sutherland’s law, traditionally employed to 

account for changes in the gas viscosity, and similar analytic relationships for other fluid properties 

or the assumption of a constant Prandtl number (which are not valid in certain temperature ranges).  

Despite the perceived importance in other contexts (essentially hypersonic aerodynamics, see 

Pezzella et al. [64]), these issues have not been adequately addressed for the case of low-speed 

compressible flows.  

This lack of modeling greatly limits the effective applicability of the abovementioned algorithms to 

many cases of potential interest and this is particularly true for thermal convection.  

Indeed, unlike other categories of flows typically encountered in engineering applications (external 

or “forced” flows), the properties of this kind of convection (flow structure, heat transfer rate, etc.) 

are strongly linked to the sequence of bifurcations this kind of flow undergoes when the temperature 

difference is increased. This process is extremely sensitive to the physical properties of the fluid. 

Non-Boussinesq effects can arise from compressibility and variation of thermal conductivity or 

viscosity with temperature. Even minute variations in such properties can lead to significant 

changes in the aforementioned sequence, causing a dramatic departure from reality [65-73]. 

Although (given the complexity of the subject), we limit ourselves to considering gases with a fixed 

chemical composition (negligible dissociation and ionization phenomena in the considered range of 

temperatures; this will be the subject of a future study specifically devoted to such issues), however, 

maximum effort is given to devise the model in the most general form.  
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For such a reason we explicitly ignore the many empirical correlations available in the literature 

(for viscosity, the heat capacity coefficients and other fluid properties as a function of temperature). 

Rather we concentrate on a critical analysis of principles and concepts that can provide a solid 

theoretical foundation to a general and comprehensive framework where the Boussinesq model, the 

principle of equipartition of energy, the Sutherland’s law, etc. are naturally recovered when the 

considered circumstances support their validity.  

Along these lines, empirical contamination is kept at minimum, parameters to be provided in input 

being restricted to a limited amount of information, which model from a physical point of view gas 

molecular interactions at microscopic level. 

Given the underlying complexity, the ingredients of our overall conceptual architecture are 

provided and discussed with a step-by-step approach with the declared intention to define the 

involved sub-models as a simply as possible and then build and grow the framework “organically” 

by progressive integration of components and parts.  

The class of such sub-parts or sub-models (well known or partially of a prototypical nature as we 

will see later in this manuscript) is highly diverse including energy storage models at microscopic 

(molecular) level, the kinetic theory of gases and extensions provided by quantum mechanics, and 

computational fluid dynamics in synergy with non-dimensional and asymptotic analyses. 

This paper is articulated into several sections. In Section 4, we describe shortly how we model the 

typical gas thermodynamic properties (to improve the manuscript readability, our efforts to develop 

an elegant and coherent framework in terms of the so-called Chapman-Enskog solutions of the 

Boltzmann equation and all the related details are reported in two appendices). We restrict our 

attention to a single-component, calorically non perfect, diatomic gas at atmospheric pressure (let us 

recall that the main components of air are gases of such a kind). The description of fully 

compressible equations, the ones arising from asymptotic analysis with respect to the Mach number 

is elaborated in Sect. 5. The pressure-based solver for compressible thermal convection 

(incorporating the capacity to deal with the increased ability of the fluid to store energy in degrees 

of freedom other than the classical translational and rotational ones) is dealt in Section 6. Finally, in 

Section 7, the reliability and accuracy of the algorithm are checked by computing compressible and 

incompressible benchmark test cases, which are then extended to more general circumstances. 

 

4. Gas Thermodynamic Properties 

  

Before embarking in the presentation of the balance (partial differential) equations governing fluid 

behavior, for the convenience of the reader we review shortly in the present section the models 

adopted to account for the dependence on the temperature of the typical fluid physical properties 

which in such equations appear in the form of “coefficients” (namely, the specific heat Cv, the 

viscosity µ and the thermal conductivity ; the interested reader being referred to Appendix A and 

Appendix B for related physical reasonings, non-equilibrium concepts and other advanced notions 

coming from quantum mechanics and statistical thermodynamics). 
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We assume for the energy atoms: 
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and for molecules 
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where Rgas=R/m is the gas constant given by the ratio of the universal gas constant and the gas 
molar mass m and vibr is the socalled characteristic temperature for vibration. 

For atoms: 
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and for molecules 
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For a gas with only translational and rotational energy (no vibrational mode), we have  

 

gasV RC
2

3
  for atoms and          (3a) 

 

gasV RC
2

5
  for diatomic molecules        (3b) 

 

That is CV, is constant. This is the case of calorically perfect gas. As an example, for air at or 

around room temperature, CV = 5Rgas/2, Cp = CV + Rgas = 7Rgas/2, and hence  = Cp/ CV =  = 1.4 = 

const. So we see that air under normal conditions has translational and rotational energy, but no 

significant vibrational energy, and that the results of statistical thermodynamics predict  = 1.4 = 

const 

However, when the temperature reaches O(103) K or higher, vibrational energy is no longer 

negligible. Under these conditions, we say that "vibration is excited"; consequently CV = f(T) and  
becomes a function of the temperature. In the theoretical limit as T eq. (2b) predicts CV  

7Rgas/2, and again we would expect CV to be a constant. In the following we will base our further 

theoretical elaborations as well as the resulting formalism of all the considered fluid equations on eq. 

(2b). 
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For the dynamic viscosity we assume the following relationship 
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Where NAV is the Avogadro number (NAV =6.022x1023 g-mol-1). 

For the general case of a diatomic gas, the overall thermal conductivity is expressed as the sum of 

three contributions (see, e.g., Figure 1), each accounting separately for the effect of a specific 

energy mode: 
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Figure 1: Translational, rotational and vibrational thermal conductivities of pure Nitrogen as a 
function of temperature. 
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The resulting gas Prandtl number is cast in compact form as 
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where )1,1(~  and )2,2(~  are the socalled collision cross-sections (see again the appendices).  

 

In the following we concentrate on nitrogen as a typical paradigmatic diatomic gas. 

Nitrogen is an inert, neutral and colorless gas. Apart from being one of the main components of air, 

it has been one of the most important reference fluids for both tests of physical models and for the 

calibration of experimental equipment. More than 14000 experimental data for many types of 

thermodynamic properties are available in the fluid region of nitrogen (Yos [74]; Wood et al. [75]; 

Span et al. [76]; Lemmon and Jacobsen [77] and references therein). Together with water, argon, 

methane, ethylene and carbon dioxide, nitrogen belongs to the group of substances possessing the 

most extensively published data sets. 

For temperatures between 20 and 500 K, the heat capacity can be calculated as a classical rigid-

rotor and harmonic oscillator with an uncertainty of 0.01%. Below about 15 K, the quantum effects 

on the heat capacity of nitrogen isotopes become significant because the molecules of this gas have 

a low rotational characteristic temperature (around 2.8 K). 

At high temperatures (above 2000 K), additional contributions occur from the high vibrational 

characteristic temperature (about 3400 K) as well as from a high electronic characteristic 

temperature of about 72000 K for the first excited electronic state. 

A partial check on the validity of our approach (see again Appendix A and Appendix B for all the 

related theoretical considerations) can be obtained by comparing results obtained by using equations 

(2)-(6) with those resulting from the application of the classical Sutherland’s law (Figures 2 and 3 

show that there is good agreement for T<103 K, i.e. when the only degrees of freedom at play are 

the rotational and translational ones). 
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Figure 2: Dynamic viscosity of pure Nitrogen as a function of temperature, comparison with the 
Sutherland’s law 

 
 
 

 
 

Figure 3: Thermal conductivity of pure Nitrogen as a function of temperature, comparison with the 
Sutherland’s model. 
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Figure 4: Computed Prandtl number of pure Nitrogen as a function of temperature (consideration 
of this curve at temperatures larger than  5000 K makes no sense as Nitrogen is expected to 
undergo dissociation at such temperatures, with ensuing changes in the gas chemical composition). 

 

 

5. The Governing Equations 

 

5.1 The Balance of Mass, Momentum and Enthalpy 

 

In the present work, in conjunction with all the arguments given in the preceding sections, we adopt 

the following system of equations to model fluid behavior: 
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where V  is the fluid velocity, p and  its pressure and density, respectively, and 
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TRp gas            (11) 

 

As already mentioned, the Boussinesq incompressible model cannot be used if the temperature 

variations are large even if the Mach number is extremely low (Gray and Giorgini [13]; Paolucci 

[34]). 

Here, in particular, following earlier works (Beccantini et al. [15], Bouloumou et al. [49]), we move 

from an internal-energy to a specific-enthalpy formulation in order to put the equations in a form 

suitable for the derivation and ensuing utilization of the socalled low-Mach approximation 

repeatedly mentioned in the preceding pages. Introducing the specific enthalpy as h = e + p/, 

taking into account that in terms of substantial derivatives the following expression holds 

 

Dt

Dp

Dt

Dp

Dt

Dh

Dt

De 
 2

1
          (12a) 

 

which, using the continuity equation, in turn can be rewritten as: 

 

V
p

Dt

Dp

Dt

Dh

Dt

De



1

         (12b) 

 

by substituting the above expression in the energy equation, we finally cast the balance equation for 

enthalpy in condensed form as 

 

      VgVVT
Dt

Dp

Dt

Dh s
o

s
o   :2      (13) 

 
where   TReTCTCTReeeh gasvibrVtrotVtranslgasvibrrottransl     

 

gas
vibr

vibr
vibr R

T
e

1)/exp( 


           (14) 

 

For the convenience of the reader, it should be pointed out that the above expression defines an 

implicit relation between h and T, which needs a separate treatment (in order to be in a position to 

determine T as a function of h as provided by the solution of eq. 13). Towards this end (we will be 

more precise later), here, we conveniently introduce a linear relationship between evibr and T by 

introducing a coefficient VvibrC
~

 (se Figure 5) defined as: 

 

gas
vibr

vibrvibr
Vvibr R

T

T

T

e
C

1)/exp(

/~




        (15) 
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that has to be computed numerically “a priori”, i.e. before entering the effective solution process of 

the system of equations (7-13). Accordingly, the specific enthalpy can be formally expressed as a 

“quasi-linear” function of temperature: 

 
  TRTCTCTCTReeeh gasVvibrVtrotVtranslgasvibrrottransl 

~
   (16) 

 

 

 
 

Figure 5: CVvibr of pure Nitrogen as a function of temperature, comparison with VvibrC
~

. 

 

We have to warn the reader that although the relationship between h and T becomes apparently 

linear, the coefficient VvibrC
~

is still a function of temperature (which explains why we speak about a 

“quasi-linear” relationship; as shown in Fig. 5, e.g., for the case of nitrogen).  

 

5.2 A Global Balance of Energy 

 

An additional useful equation is introduced by imposing the global conservation of energy (along 

these lines, in addition to the works cited in the preceding subsection the reader may also consider 

Le Quéré et al. [78]; Weisman et al. [47]). Integrating the equation of energy over the considered 
geometrical domain (volume ), and omitting the viscous dissipation and the Vg   terms (which, 

in general, are significant only if the considered flow has a very large scale, see, e.g., Gebhart [79]), 

we obtain: 
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ds
n

T
ed

t 
 





           (17a) 

 

where the second integral involves the heated or cooled boundaries of the considered geometry. 

Equation (17a) accounts for the internal energy conservation over the total volume. By expressing e 

as the sum of the related translational, rotational and vibrational contributions and taking into 

account that Cvtransl and Cvrot can be assumed to be constant and independent of temperature, the 

above expression can be expanded as 

 

  














de
t

ds
n

T
TdCC

t vibrrotVtranslV        (17b) 

 

By multiplying by the gas constant Rgas and dividing each term by the constant quantity (Cvtransl + 

Cvrot), the balance of energy can be also conveniently rewritten as: 
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
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
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de
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R
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R
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rotVtranslV
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rotVtranslV
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  (17c) 

 

Finally, using the equation of state to replace RT with the pressure, this equation is cast in compact 

form as: 

 

    
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
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

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de
tCC

R
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n

T
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R
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dP
vibr

rotVtranslV

gas

rotVtranslV

gas  11
   (18a) 

 

where  


 


RTdP 1
           (18b) 

 

may be regarded as a “space-averaged pressure”. 

 

 

5.3 Non dimensional formulation and Characteristic Numbers 

 

The main motivation of the present section is the selection of characteristic scales for length, time, 

density, velocity, pressure, temperature and so on, so that the governing equations introduced in the 

earlier sections are conveniently made dimensionless: 

 

medgas

t
ref TR

P
0           (19a) 

medTTref 
             (19b) 
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refrefref              (19c) 

 
medTTrottranslref 

           (19d) 

gasVref RC             (19e) 

gasref

ref
ref

R
2

7


            (19f) 

2

2

L
p refref

ref


           (19g) 

L
V ref

ref


            (19h) 

ref
ref

L
t



2

            (19i) 

 
Where L is a reference length, 

0t
P  is the system pressure at the initial instant t=0 (assumed to be 

uniform) and ref  and αref are the reference gas kinematic viscosity and thermal diffusivity, 

respectively. T  is the considered temperature difference. 

The nondimensional temperature is introduced as 
T

TT
T ref




*  and, accordingly, 

TReh gasrefref  . Tref is assumed equal to the average gas temperature at the initial instant t=0 

(Tref = Tmed). 

The resulting grouping of physical properties and characteristic scales form dimensionless numbers 

which represent ratios of various forces or quantities:  

 

medT

T
            (20) 

 

)(PrPr refeff
ref

ref T



         (21) 

 

2

2

ref

gas TLR




           (22) 

 

For problem closure, these 3 independent nondimensional numbers must be supplemented with the 

relevant value of the Rayleigh number. Given the compressible nature of the flow (and our declared 

intention to drop out the Boussinesq approximation), an adequate definition of this nondimensional 

parameter is not straightforward as one may expect. Here, we define it by analogy with the 

equivalent expression traditionally used in the context of studies dealing with incompressible 

(Boussinesq) buoyancy convection (Lappa [11]): 
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refref

T TLg
Ra


 3

           (23) 

 

where the socalled isobaric thermal expansion coefficient (from a formal point of view this can be 

obtained by considering the density multivariate Taylor expansion in series and neglecting all the 

terms of order higher than one) 

 

constp
T T 









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



 1

          (24a) 

 

generally assumed to be an intrinsic property of the fluid, is computed by resorting to the equation 

of state (=p/RT) as follows: 

 

TRT

p
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111
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



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







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


        (24b) 

 

Following a common practice in the literature, in particular, we assume T=1/Tmed 

 

refrefmedT

TLg
Ra



3
           (25) 

 

 

5.4 Low-Mach-Number Asymptotics 

 

For many applications, the equations in Sects. 5.1 And 5.2 are too complex and broad in scope. In 

the absence of observational information to properly constrain the model, a reduction of them is 

beneficial. As already explained to a certain extent in Sect. 2, a commonly used approach is to 

project such equations in a low-Mach-number space of parameters.  

The related procedure envisages that all the primitive variables of the flow are expanded in power 

series law of a small parameter M2 << 1 (where, obviously, M is the reference Mach number). 

 
 222*

1
*
0

* )(MOM           (26a) 

 222*
1

*
0 )(MOMppp           (26b) 

 222*
1

*
0 )(MOMVVV           (26c) 

 222*
1

*
0 )(MOMTTT           (26d) 
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To derive the low Mach number equations, primitive variables are substituted by their expansions in 

the fully compressible Navier-Stokes equations in non-dimensional form and the lowest order terms 

in M2 are collected (Beccantini et al. [15]; Benteboula and Lauriat [48]). 

At the order -1, the non-dimensional momentum equation reduces to: 

 
0*

0 p            (27) 

 

At the order zero, the following low-Mach number governing equations are obtained for mass and 

momentum: 

 

 
*

*
0*

0
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     *
0

*
0

*
0

*
1

*
0

*
0

*
0

*
0

*
0*

Pr
2Pr 


 Ra

VpVVV
t

s
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
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    (29) 

 

with the state equation: 

 
 1*

0
*
0

*
0

  Tp           (30) 

 
being required to recover the density *

0 (r, t). 

It becomes evident at this stage that the most important outcome of the low Mach number 

approximation is the possibility to split the pressure into two components; a thermodynamic 

pressure p0 homogeneous in space and allowed to vary in time, and a dynamic pressure p1 

decoupled from density and temperature fluctuations.  

The reader will also easily realize that the homogeneous pressure p0 will be playing essentially the 

role of the average pressure defined by eq. (18b) (Beccantini et al. [15] Benteboula and Lauriat [48], 

Le Quéré et al. [78]); the second pressure p1 is decoupled from the density, so that the 

decomposition eliminates acoustic waves. 

Let us recall that, as already outlined in Sect. 2, density variations are responsible for fast acoustic 

waves which are the major source of issues in time-advancing numerical algorithms (indeed, due to 

their speed of propagation that is two or three orders of magnitude larger than the convective 

velocities, very small time integration steps must be used to guarantee algorithm stability). 

Moreover, such waves play generally no significant role in typical problems of thermal convection.  

In the following for the sake of clarity, the subscripts related to the asymptotic expansions will be 

omitted, with the zero-th and first order pressure contributions p0 and p1 simply indicated as P and 

p’, respectively. 
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Denoting for simplicity by class the ordinary thermal conductivity (accounting for the influence of 
translational and rotational degrees of freedom only), i.e.  rottranslclass   , the global energy 

balance (evolution in time of the thermodynamic pressure) simply reads: 
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de
t vibr   (31) 

 

where it is easy to recognize (via the equation of state) that the first term simply accounts for the 

change in time of the (constant in space) thermodynamic pressure.  

For the specific enthalpy balance we have: 
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To summarize, in the above equations the conservation of internal energy has been obtained 

neglecting the contribution of the dynamic pressure in the internal energy and the viscous 

dissipation, while in the time-evolution equation for the enthalpy, we have discarded the term O(M2) 

in the pressure asymptotic expansion as well as the temperature variation due to the viscous 

dissipation. In all the equations, the density has been replaced using the (asymptotic) equation of 

state, in which the contribution of the dynamic pressure is neglected. 

It is also worth highlighting that, as already explained to a certain extent in Sect. 5.1, *~
VvibrC  

appearing in the above relationship does depend on T*, which implies that eq. (33) has to be solved 

resorting to an iterative process.  
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 6. The modified projection method for high-temperature gases 

 

Hereafter, for brevity asterisks used to denote nondimensional quantities are omitted. 

Let us start from the simple remark that a property common to all variants of the projection method 

is their ability to proceed as a type of fractional step method by first writing a modified momentum 

equation and then updating the velocity field using the computed pressure to account for the 

continuity equation. More precisely, at each time step, an intermediate field V
~~  is determined 

without the knowledge of the correct pressure field, and therefore no condition related to the 

conservation of mass is enforced. The intermediate velocity field is then corrected by a second step 

in which a pressure equation is solved and then the computed pressure is used to produce a velocity 

field satisfying the continuity equation.  

In the first step, the approximate (often also referred to as the “provisional”) field V
~~  can be 

computed neglecting the gradient of dynamic pressure in the momentum equation, i.e., 
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2Pr
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In the second substep, the dynamic pressure field must be computed by solving a Poisson equation 

introduced using the continuity equation   tV nn   /11   and taking into account that 
11  nn V  is related to V

~~  by the relationship    ptVV nn  ~~11  : 
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Finally, the velocity field can be updated using the computed dynamic pressure field to account for 

continuity: 

 

ptVV
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
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        (36) 

 

6.1 Spatial discretization 

 

In our simulations we cover the computational domain with a staggered grid, the fluxes and 

velocities being located at the centers of the faces and, the scalar variables density, temperature and 

pressure at the center of the cells. A centered finite-difference scheme with a second-order accuracy 

is retained for the spatial discretization. However, we use a third-order-accurate upwind scheme for 
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the convective terms in the energy equation. To this end, the convective term V  has to be 

reformulated as 

 
  VVV            (37) 

 
The third-order-accurate upwind scheme is applied only to the conservative part  V . 

This scheme appears to be necessary for high density ratios in order to damp the spurious 

oscillations introduced by the centered treatment of convective terms (see Benteboula and Lauriat 

[48]). 

 

6.2 Time discretization 

 

A second-order backward scheme is then employed for approximating the time derivative at the 

right-hand side of the elliptic (Poisson) equation. It reads 
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         (38) 

 

This term is generally an instability source for such an algorithm, as reported in Nicoud [44], Cook 

and Riley [43] and Benteboula and Lauriat [48].  

 

6.3 Outline of the time marching procedure 

 

Our effective resolution process is finally articulated into four main macro stages of computation. 

 

First macro stage: 

The time derivative of the integral related to the vibrational energy at the right-hand side of eq. (31), 

denoted by , is discretized with a first-order backward scheme involving known quantities at tn 

and tn-1: 
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Second macro stage: 

A second-order explicit Adams-Bashforth scheme is used to advance in time thermodynamic 

pressure and enthalpy:  
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Temperature is determined accordingly (via an iterative process) through its relationship with the 

specific enthalpy: 
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             (42) 

(in general, two or three iterations are sufficient to attain convergence). 

Density is computed via the state equation using the newly determined values of P and T: 
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Third macro stage: 

The intermediate (provisional) momentum field is computed as: 
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And the dynamic pressure is computed solving the equation: 
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Final stage 
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7. The benchmark problem and its extensions 

 

As indicated at the end of Sect. 3, our overall framework has been built via the integration of self-

contained modules, which could be individually tested.  

However, because it is crucial that the entire numerical architecture is tested as a single integrated 

unit, we considered available solutions in the literature for comparison. 

To enhance progress in this field of study, several benchmark problems have been defined for 

natural (buoyancy) convection in closed cavities and enclosures. These benchmarks have been 

specifically conceived to allow the validation of newly developed numerical approaches and 

algorithms.  

Though most of these studies were concentrated on cases with low temperature gradients where the 

Boussinesq assumption is definitely valid (for example, one of these is the benchmark solution 

discussed by DeVahl Davis [79,80], see also Bucchignani [81]), however, in 2000 the CEA Nuclear 

Reactor Division of the French Atomic Energy Commission organized a workshop at the Institut 

National des Sciences & Techniques Nucléaires (INSTN) in Saclay, France (CEA [82]) to account 

for the effect of compressibility. In the call for contributions to this workshop, a new benchmark 

problem was designed around the extension of the incompressible de Vahl Davis benchmark 

problem to cases with large temperature differences imposed upon the vertical walls (see, e.g., 

Paillère and Le Quéré [83]). Eight test cases, simulating air at a prescribed Rayleigh number of Ra 

= 106 in a two-dimensional square cavity (see Fig. 6) were defined by fixing four non-dimensional 

temperature differences and both constant and variable viscous and thermal diffusion coefficients, 

with the temperature dependent coefficients modelled by the Sutherland’s Law. Four years later, the 

results presented at such a workshop were further refined in the framework of the conference on the 

Mathematical and Numerical Aspects of Low Mach Number Flows organized by INRIA and MAB 

[84] in Proquerolles, France. The results by different participants were collected in a couple of 

papers (Le Quéré et al. [78]; Paillère et al. [85]). 
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Figure 6: Square cavity with adiabatic bottom and top walls and lateral walls at different 
temperatures (no slip conditions along the entire boundary). 

 

As a sensitive parameters for comparison, participants decided to concentrate on the value of the 

Nusselt number (Nu). For the sake of consistency with the definition of Nu used by such author, 

here we define it as: 
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(such a definition guarantees that in the absence of vibrational effects, our definition of the Nusselt 

number matches exactly the one considered by these authors).  

 

Table I illustrates the comparison between the results presented at the two aforementioned 

congresses and those obtained using the present numerical code. 
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Table I: Comparison between the present numerical results and earlier results by other authors 
(data considered for the simulations: air, Po = 101325 [Pa], Tmed=To=600 [K], Rgas = 287 [J kg-1K-1], 
ρo = Po/RgasTo, γ = 1.4, g = 9.81 [ms-2], Pr = 0.71, Ra=106). 

 

Tcold [K] Thot [K] Nucold Nuhot Viscosity Author 

594 606 8.8  8.8 Constant de Vahl Davis

594 606 8.8133 8.8112 Constant Present 

240 960 8.6866 8.6866 Sutherland’s CEA 2000 

240 960 8.6866  8.6866 Sutherland’s Vierendeels  

240 960 8.6866  8.6866 Sutherland’s Braack 

240 960 8.6855  8.6916 Sutherland’s Dabbene 

240 960 8.6747  8.6868  Sutherland’s Beccantini 

240 960 8.6338  8.6953  Sutherland’s Kloczko 

240 960 8.6861  8.6889  Sutherland’s Heuveline 

240 960 8.7150  8.7150  Sutherland’s Darbandi 

240 960 8.7135 8.7160 Coll. Int.  Present 

 

The reader will easily realize that the present results agree with those by other authors within a 

percentage less that 2%. Perhaps, the small difference noticeable for the case with larger 

temperature difference (Thot=960 K, Tcold=240 K,) with respect to the other results might be justified 

by taking into account that we did not use the Sutherland’s law to reproduce the results of the 

benchmark. Rather, towards the end of further testing the code subroutines and their reliability, we 

carried out the simulation using for viscosity and thermal conductivity the more general laws shown 

in Figs 2 and 3, respectively. Although we derived such curves for the case of pure diatomic 

Nitrogen, they may be regarded as a good approximation of the Sutherland’s law for air as well for 

T<103 K (see, e.g., Gupta et al. [86]).  

At this stage, it should be clearly pointed out that the range of temperature considered for the 

benchmark (240 < T < 960 K) is not sufficient to excite the vibrational degree of freedom of the air 

components (let us recall that, as reported in the Appendix B, the characteristic vibrational 

temperatures vibr of Oxygen and Nitrogen, as obtained from spectroscopic data, are 2270 K and 

3390 K, respectively), which means the only NOB effects at play in such simulations were the gas 

compressibility and the dependence of viscosity and thermal conductivity on temperature (via the 

Sutherland’s law).  

In order to extend the benchmark to a case where the vibrational degree of freedom does a play a 

role and the departures from the Sutherland’s law become significant for viscosity, thermal 

conductivity and specific heat coefficient, we have considered Nitrogen at an average temperature 

of 3500 K (as shown in Fig. 4, the related value of the Prandtl number, Pr0.69, is relatively close 

to the one that was considered for the 2004 benchmark, Pr=0.71). In particular, we have assumed as 
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thermal conditions on the lateral cold and hot walls, a temperature well below and well above the 

characteristic vibrational temperature of Nitrogen (Tcold=2000 K< vibr< Thot=5000 K). 

The results shown in Fig. 7, reveal that while the thermofluid-dynamic field does not show 

significant qualitative changes with respect to the pattern obtained for the benchmark test case (see, 

e.g., Darbandi and Hosseinizadeh [60]), the Nusselt number is shifted to a slightly lower value 

Nu8.512159. 

 
Figure 7: Thermofluid-dynamic field (steady state) in a square cavity filled with Nitrogen gas 
(lateral walls at temperatures Tcold=2000 K and Thot=5000 K, respectively, Nu=8.512159, adiabatic 
bottom and top walls, grid 320x320, max/min2.6). 

 

According to the present results, however, the most interesting changes (induced by the excitation 

of the vibrational degree of freedom in the flow and related NOB effects) emerge when the 

direction of the temperature gradient is rotated by 90 with respect to the direction considered in the 

benchmark, i.e. when the temperature gradient and the gravity acceleration have the same direction.  

This leads us to the well-known Rayleigh-Bénard (RB) convection problem that so much attention 

has attracted in the literature due to its relevance to a number of natural and industrial processes 

[11,12]. This kind of convection presents, during the evolution from the stationary state to the fully 

developed turbulent regime, such a rich scenario of different structures and bifurcations that it is 

widely regarded as a reference problem for the study of different transition mechanisms in fluid 

dynamics ([87-93]). 

When the Rayleigh number is increased beyond a certain critical threshold, it is known that even 

under the nonphysical constraint of two-dimensional flow in a square cavity, RB convection can 

undergo transition to relatively complex and/or time-dependent regimes. A rigorous categorization 

of solutions in terms of the related symmetries can be found in Mizushima [94]. In general, the 

distinct modes of convection can be delineated by considering various combinations of the possible 

symmetries along the horizontal and vertical directions. This leads to partition the set of possible 

modes into four cases, as illustrated in Figure 8: 
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Fig. 8: Categorization of possible solutions of RB convection in 2D finite enclosures in terms of 
related symmetries. 

 

• (aa): The antisymmetric–antisymmetric mode. This mode has an odd number of vortex cells along 

both the horizontal and the vertical directions. 

• (sa): The symmetric–antisymmetric mode. This mode is characterized by an even number of rolls 

along the horizontal direction and an odd number of vortices along the y direction. 

• (as): The antisymmetric–symmetric mode. This mode exhibits an odd number of rolls along x and 

an even number of cells in the perpendicular direction. 

• (ss): The symmetric–symmetric mode. This mode has an even number of vortex cells along both 

the horizontal and the vertical directions. 

 

In practice, due to the symmetry/antisymmetry properties of the governing equations and of the 

boundary conditions, different solutions can appear which can be obtained by reflection about the 

vertical cavity centreline (parallel to the applied temperature gradient), about the horizontal cavity 

centerline (perpendicular to the gradient) and about both of them. 

In particular, as originally illustrated by Mizushima and Adachi [95], for Pr=O(10) it is known that 

the initial modes with the (aa) or (sa) symmetries can produce modes with different symmetries via 

a nonlinear interaction mechanism when the Rayleigh number is sufficiently high.  

In the following, in particular, we concentrate on Ra=106, such a choice (although it was used for 

the benchmark as well) being motivated by the earlier numerical results by Goldhirsch et al. [96], 

who found (for this specific value of the Rayleigh number, for Pr=0.71 and for incompressible flow 

and constant thermodynamic properties) the solution to be characterized by the unusual (as) 

symmetry. For this value of the Prandtl number, they also identified this specific value of the 

Rayleigh number as a threshold value roughly separating steady solutions (for smaller values of Ra) 

from oscillatory solutions (for larger values of Ra). 

Although we consider pure Nitrogen, Figure 9, shows that when the behaviour can be considered 

incompressible (very small value of the temperature gradient, 1 K only) and the average 

temperature is much smaller than the vibrational characteristic temperature, the emerging solution is 

very similar to that obtained by Goldhirsch et al. [96].  
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Figure 9: Rayleigh-Bénard convection in a square cavity heated from below, cooled from above 
with adiabatic sidewalls (grid 320x320, data considered for the simulations: Nitrogen, Po = 101325 
Pa, Tcold=300 K and Thot=301 K, Ra=106, steady solution, max/min=1.00000).   

 

a) b) 

c) d) 
Figure 10: Rayleigh-Bénard convection in a square cavity heated from below, cooled from above 
with adiabatic sidewalls (grid 320x320, data considered for the simulations: Nitrogen, Po = 101325 
Pa, Tcold=240 K and Thot=960 K, Ra=106, oscillatory solution, nondimensional frequency f=48.78). 
The computed thermofluid-dynamic field is shown in four snapshots evenly distributed within one 
oscillation period (max/min5.5). 
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Figure 11: Computed Nusselt number for the same configuration shown in Fig. 10 (Nuhot-solid line, 

Nucold-dashed line). 

 
Figure 12: Rayleigh-Bénard convection in a square cavity heated from below, cooled from above 
with adiabatic sidewalls (grid 320x320, data considered for the simulations: Nitrogen, Po = 101325 
Pa, Tcold=2000 K< vibr< Thot=5000 K, Ra=106, steady solution, max/min2.6).   

 

Indeed, the temperature contour plot and the associated velocity field show a stationary roll-over-

roll structure with three boundary layers: two at the top and bottom plates and one in between the 

rolls. 

Figures 10-12, however, reveal that when NOB effects are taken into account, the symmetries of the 

emerging flow change dramatically depending on the effective temperature gradient applied and the 

fluid average temperature (this clearly indicates that NOB effects of various natures can exert a 
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strong influence on the pattern-symmetry selection process that takes place via the aforementioned 

mode nonlinear interaction mechanism). Such effects can even change the nature of the resulting 

flow from steady to oscillatory, as shown in Figs. 10 and 11. 

By comparing Figs. 9 and 10, the reader will immediately realize that when the effects of 

compressibility are taken into account, the perfect mirror symmetry with respect to the midsection, 

seen in Fig. 9 for the case of an almost incompressible flow, should no longer be considered as a 

characteristic property of the pattern. The upper roll takes a size much larger than that of the roll 

affecting the lower half of the enclosure. The latter, in turn, undergoes evident oscillatory motion, 

which seems to be produced by the periodic growth and decay of a secondary roll embedded in the 

lower circulation system (such interpretation being consistent with the clearly observable presence 

of a wave travelling along the bottom thermal boundary layer). 

For Tcold=2000 K< vibr< Thot=5000 K where the effects produced by the activation of the 

vibrational degree of freedom can be considered dominant, although we are still considering the 

same value of the Rayleigh number (Ra=106) the flow pattern is again steady (Fig. 12). It comprises 

a main convective cell with deformed shape and two smaller satellite vortices located in upper left 

and in the lower right corners, respectively.  

These results indicate that the mechanism originally identified by Mizushima and Adachi [95] for a 

larger value of the Prandtl number is still relevant to the present case. For Pr=O(1), however, it is 

driven essentially by modes with the (as) and (sa) symmetries. Being involved with different 

relative amplitudes (the ratio of such amplitudes being linked to the degree of vertical asymmetry 

introduced in the problem by the temperature-dependent fluid physical properties, i.e. NOB effects), 

the superposition/competition of these modes gives rise to oscillatory or steady patterns. The 

changes experienced accordingly by the Nusselt number are summarized in Table II.   

 
Table II: Rayleigh-Bénard convection in a square cavity heated from below, cooled from above 
with adiabatic sidewalls (grid 320x320, data considered for the simulations: Nitrogen, Po = 101325 
[Pa], Ra=106). 
 
 

Tcold [K] Thot [K] Nucold Nuhot Solution 
300  301  4.3978 4.3977 Steady 

 
240 960 4.11 

(average) 
4.11 
(average) 

Weakly 
Oscillatory 

2000 5000 6. 0701 6.0722 Steady 
 

 

The above results should be regarded as a paradigmatic example of the significant changes that the 

resulting thermofluid-dynamic field can exhibit for a fixed value of the Rayleigh number due to 

NOB effects. 
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Figure 13: Threedimensional snapshot of convection and related temperature field emerging in a 
10x10x1 horizontal layer heated from below and cooled from above with lateral periodic boundary 
conditions (Nitrogen, Ra=1.5x104, Tcold=2000 K< vibr< Thot=5000 K): a) isosurfaces of 
temperature, b)  isosurfaces of vertical velocity component. 
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Given the intimate three-dimensional nature of this kind of flow when relatively supercritical 

conditions are considered, the additional example shown in Fig. 13 has been obtained using the 

fully 3D version of the present numerical code.  In particular, we have considered a shallow layer 

with periodic boundary conditions at the sides, for which on the basis of classical theory (the 

socalled Busse balloon, see, e.g., Lappa [11]) the emerging secondary modes of RB convection for 

Ra=O(104) should appear in the form of elongated oscillatory rolls.    

Figure 13 clearly shows that NOB effects can cause a significant departure from the secondary 

modes of RB convection in liquid layers as predicted by the classical theory. Indeed, when the 

upper and lower solid surfaces bounding the layer are kept at Tcold=2000 K and Thot=5000 K, 

respectively, a kind of oscillatory spoke convection appears in place of oscillating elongated rolls. 

Due to page limits and not to increase further the length of this article (that has been devoted 

essentially to the presentation of the numerical method and its new aspects with respects to earlier 

efforts available in the literature), the detailed analysis of NOB effects expressly produced by the 

activation of the vibrational degree of freedom is delayed to future studies. Other possible routes to 

further expand the potentialities of the present algorithm are outlined in the conclusions.  

 

 

7. Conclusions and Future directions 

 

In this work, we addressed the question of how a departure from the known behaviour of gases at 

ordinary temperatures can affect the flow and how a typical numerical framework for low-Mach-

number compressible flows can be adequately extended so to make it suitable for the simulation of 

thermal (natural) flows at large temperatures and/or driving temperature gradients.   

In particular, starting from existing strategies for the solution of compressible (low-Mach) thermal 

convection, some effort has been provided to strengthen the used approach by incorporating in the 

algorithm the possibility to account for the activation of the molecule vibrational degree of freedom. 

This has required the application of a set of complementary points of view on the problem, 

spanning different length scales, covering different disciplines, ranging from the classical kinetic 

theory of gases, to some results provided by quantum mechanics, passing through the known 

solutions of the Boltzmann equation and related Eucken extensions, taking advantage of useful 

indications provided by existing asymptotic analyses and the resulting multiple-pressure-variables 

approach, up to extending the class of projection methods to the case of compressible flows.  

The advantage of the resulting framework lies in its capability to deal with a broad range of cases in 

terms of average value of the system temperature and applied temperature difference, including 

nearly incompressible flows, with a single modeling, without any need to change the 

thermodynamic properties representation or to reformulate the governing equations, thereby 

alleviating the user from the burden to assess for each case the best set of properties and equations 

to be used.  
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We hope this will maximize the strength of this category of (projection-like) methods in enabling 

new challenging problems to be addressed across the engineering and physical sciences. 

As a concluding remark, we may further emphasize the advantage provided by such a framework by 

pointing out how it could be easily extended to the case of non-reacting gas mixtures. Future work 

shall be also devoted to considering natural convection in gases which undergo dissociation. 
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Appendix A: The Principle of energy equipartition and its limits 

 

For the convenience of the reader, let us recall that the molar mass of atoms of an element is given 

by the atomic mass of the element (e.g., 28.0 for N2 and 32.0 for O2) multiplied by the molar mass 

constant, 1×10−3 kg mol-1 = 1 g mol-1. The universal gas constant R is related to the Boltzmann 

constant k by R = (k NAV) where k = 1.3806505×10-23 J ⋅ K−1, and NAV = 6.022 x 1023 mol-1 

R=8.31451 J K-1 mol-1. The specific gas constant of a gas or a mixture of gases (Rgas) is given by 

the universal gas constant divided by the molar mass (m) of the gas/mixture, i.e. Rgas=R/m. 

 

A.1 Degrees of Freedom and Energy Equipartition 

 

At room temperature, air is mainly made of molecular nitrogen and oxygen.  

A simple concept of a diatomic molecule (two atoms) is the “dumbbell” model”.  These molecules 

can store energy in various ways. 

1. Because a molecule is moving through the space it possesses energy of a translational kind. Since 

motion along each coordinate direction gives a contribution to the total kinetic energy, the molecule 

is also said to be characterized by three "thermal degrees of freedom."  

2. If a molecule is rotating about the three orthogonal axes in space, it has rotational energy as well. 

As for a diatomic molecule, the moment of inertia about the inter-nuclear axis is negligible, and 

hence the rotational kinetic energy about this axis tends to be very small (with respect to rotation 

about the other two axes), molecules of this kind are said to have only two "geometric" as well as 

two "thermal" degrees of freedom.  

3. If the considered molecule is not monoatomic, the atoms of the molecule will be also vibrating 

with respect to an equilibrium position within the molecule. More precisely, there will be two 

sources contributing to the vibrational energy of the molecule: a) the kinetic energy associated with 

the linear back-and-forth motion of the two atoms (as they vibrate), and b) the potential energy 

intimately related to the intramolecular force. The most remarkable consequence of this realization 

is that, although a diatomic molecule has only one geometric degree of freedom (the vibration along 

one direction only, i.e. the internuclear axis), it shall be considered in terms of two distinct thermal 

degrees of freedom (the contribution of kinetic and potential energy, respectively).   

Because the energy of different internal degrees of excitations is additive, the total internal energy 

can be found by summing the translational, rotational and vibrational modes. 

Therefore, neglecting electronic contributions, we see that the total energy of a molecule is the sum 

of its translational, rotational and vibrational energies  

 

etot = etransl + erot + evibr  for molecules       (A1a) 

 

etot = etransl    for atoms       (A1b) 
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According to our classical (kinetic) theory of gases, all of these modes (translational, rotational, 

vibrational) should be equally occupied at all temperatures (but, in general, they are not). This 

result represents a very classical theorem from kinetic theory, the socalled "theorem of equipartition 

of energy". Established before the turn of the century, this theorem states that each thermal degree 

of freedom of the molecule contributes kT/2 to the energy of each molecule, or RgasT/2 to the 

energy per unit mass of gas. As an example, because the translational motion of a molecule or atom 

contributes three thermal degrees of freedom, the translational energy per unit mass should be 

3(RgasT/2) = 3/2RgasT. Similarly, since for a diatomic molecule, the rotational motion contributes 

two thermal degrees of freedom, classically one should write erot = 2(RgasT/2) = RgasT.  

Extending this modus operandi to the vibrational motion of a diatomic molecule, we recognize that 

the two vibrational thermal degrees of freedom should result in evibr = 2(RgasT/2) = RgasT. However, 

this is not confirmed by the results of quantum mechanics (as further explained in the next section). 

 

A.2 Beyond the Principle of Energy Equipartition 

 

Although according to the socalled principle of energy equipartition, collisions between particles 

should tend to homogenize the probability of the energetic state of particles so that they tend 

towards a thermal equilibrium in which energy is “equally” distributed among particles and 

energetic modes, in reality the excitation and attenuation of the internal degrees of freedom of the 

molecule conform to complex quantum patterns and are dependent on the structure of the molecule 

and on the temperature.  

From solution of the appropriate Schrodinger equation it is known that the rotational energy 

depends on a characteristic temperature for rotation given by 

 

Ik

h
rot 2

2

8
             (A2) 

 

(where I is the molecular moment of inertia and h is the Planck’s constant) and that a few 

intermolecular collisions are needed to achieve thermodynamic equilibrium.  

For T<<rot, erot  0 and Cvrot  0 that is, at sufficiently low temperatures the contribution from the 
rotation vanishes, whereas for T>>rot, TRe gasrot   and gasVrot RC  , which means that at 

sufficiently high temperatures the rotation contributes RgasT to the internal energy per unit mass. 

The rotation is then said to be fully excited.  

This is an example of circumstances where the equipartition of energy holds. That is, when the 

rotational energy is fully excited it can validly be expressed on the basis of classical mechanics as 

the sum of two square terms and each square term then contributes RgasT/2 to the internal energy as 

explained before.  

The term “fully excited” is perhaps unfortunate in that it suggests that no further energy can then be 

taken up by the motion under consideration and that the corresponding internal energy is therefore 
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constant. What is really meant is that the energy increases linearly with T; it is CV that is constant. 

The increase of Cvrot from the zero value applicable at very low temperatures to the fully excited 

value Rgas takes place at temperatures in the vicinity of rot and is therefore of no consequence in 

most applications (for many gases the ratio rot /T is very small at ordinary temperatures, rot, as 

obtained from spectroscopic data, is very small e.g., 2.07 K for 02, 2.86 K for N2). 

We now turn to the effects of molecular vibration. Here the molecule may be regarded to a good 

approximation as a harmonic oscillator of frequency . According to quantum mechanics, if we 

define a characteristic temperature for vibration by   

 

k

h
vibr


             (A3) 

 

then the vibrational energy reads 
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vibr
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T
e

1)/exp( 


           (A4) 

 

and hence 
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It can be seen from these formulas that as vibr/T tends to zero the contribution of vibration to both 

the internal energy and the specific heat vanishes. When vibr/T becomes very large, it is readily 

shown that evibr tends to RgasT and Cvvibr tends to Rgas. The vibration is then fully excited, and the 

results are again in agreement with the equipartition of energy (the energy of vibration consists, 

classically speaking, of two square terms, one from the kinetic energy and one from the potential 

energy).  

In contrast to the situation for rotation, the value of vibr, as obtained from spectroscopic data, may 

be large (e.g., 2270 K for 02, 3390 K for N2), which indicates that in order to achieve these energy 

states, a relatively large number of collisions between particles are required.  

The variation of Cvvibr with temperature may thus be significant at temperatures encountered in 

modern gas dynamics. Therefore, the total Cv reads: 
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This simple formula (Herzberg [97]; Vincenti and Kruger [98]) is useful for many practical 

purposes. As illustrated in the preceding text, the contribution of 5Rgas/2 due to molecular 
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translation and rotation can be obtained on purely classical grounds, that is, with no reference to 

quantum mechanics. The contribution of vibration, however, depends essentially on quantum-

mechanical concepts. Classical statistical mechanics is capable of giving only the high-temperature 

value of Cvvibr = Rgas. It thus provides no variation of Cv with T, a result in notorious contradiction 

to the experimental evidence. Success in accounting for the variation of Cv, with T was, in fact, one 

of the early triumphs of quantum statistical mechanics. 

 

Appendix B. Variable fluid properties, beyond the Sutherland’s model, the Boltzmann 

equation and its solutions 

 

We have seen in the preceding appendix how quantum restrictions normally prevent molecules 

from taking the full equipartition energy of their vibrational degrees of freedom, thereby making the 

principle of equipartition of energy, as derived above for classical systems, an ideal principle rather 

than an effective law applicable to real gases at high temperatures. 

As outlined in the introduction, several effects conspire to make traditional models and standard 

CFD techniques inadequate and not suitable for treating these subjects. 

Such departures, which should be regarded as oversimplification of the reality, occur at different 

length scales and concern a number of additional popular simplified formulations.  

An example is the Sutherland’s law often used by investigators in conjunction with models for 

cases in which the fluid is subjected to large temperature differences (that is when the 

compressibility of the fluid manifests itself through low Mach number effects), typically under the 

additional assumption that the Prandtl number of the gas can be considered constant.  
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As an example, for Nitrogen, Pr0.70, o=1.68x10-5 Kg m-1 s-1, To=273.15 K, S=110.5 K. 

As the temperature increases, however, reality deviates from the Sutherland’s law (viscosity is 

underestimated). 

In this appendix, we first lay the general foundations of our theoretical treatment of the 

thermodynamic properties of the gas (an essential ingredient of any high-temperature flow-field 

analysis) in terms of an appropriate description based on the classical kinetic theory of gases. In 

order to obtain a model elegant and independent of specific assumptions, we refer directly to the 

Boltzmann equation and its typical solutions. Then, the framework is further elaborated, extended 

and reinterpreted in the light of the additional illuminating knowledge provided by quantum 

mechanics (as we will see, this strategy provides a wealth of information and complementary 

aspects that are overlooked or somehow hidden when using other approaches, which otherwise have 

to be introduced on empirical bases).  
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Let us recall that technically speaking, the Boltzmann equation is a linear stochastic partial 

differential equation, since the unknown function in the equation is a continuous random variable. 

From a physical point of view, it may be regarded as a balance of forces, including three 

fundamental terms, one for forces exerted on particles by an external influence (not by the particles 

themselves), one representing the diffusion of particles in space and another accounting for the 

forces acting between particles in collision (the socalled “collision term”). By solving this equation, 

it is possible to determine properties characteristic to fluids such as viscosity and thermal 

conductivity.  

This equation, however, is incomplete, because it cannot be solved if the collision term is unknown. 

Unfortunately, the determination of this term is not straightforward as one would expect (it is a 

statistical term representing the particle collisions, and requires knowledge of the statistics the 

particles obey). 

If the molecules attract or repel one another by virtue of intermolecular forces, the theory of 

Chapman and Enskog is normally employed (Chapman and Cowling [99]; Hirschfelder, et al. 

[100]). In the framework of this theory, the collision term is written as a momentum-space integral 

over the product of one-particle distribution functions. There are four important assumptions in this 

development: (1) the gas is sufficiently dilute for only binary collisions to occur (ideal gas); (2) the 

motion of the molecules during a collision can be described by classical mechanics; particles are 

uncorrelated prior to collision; (3) only elastic collisions occur, and (4) the intermolecular forces act 

only between fixed centers of the molecules; i.e., the intermolecular potential function is spherically 

symmetric.  

This approximation gives explicit formulas for the transport properties in terms of certain "collision 

integrals", which describe the interaction between molecules of species i and j, and which have the 

physical significance of an effective cross section for collisions between molecules i and j. 

The coefficients of Viscosity, Thermal Conductivity and Diffusion are thereby related to these 

intermolecular potentials and “collision integrals” (Chapman and Cowling [99] and Hirschfelder et 

al. [100]). 

These integrals have been reduced to standard forms that have been evaluated for a number of 

intermolecular potentials. The representation of the intermolecular potential that is appropriate to a 

particular gas can be found by both empirical and theoretical methods. Vincenti and Kruger [98] 

considered potentials whose effective extent (roughly the molecular "diameter") is much smaller 

than the molecular spacing or the average distance between collisions. A discussion of such 

considerations for a variety of molecular interactions is given by the aforementioned Hirschfelder et 

al. [100]. Simply speaking, it is possible to find analytical representations of the intermolecular 

potential for which agreement is obtained between the calculated and measured values of the 

thermo-dynamic and transport properties of a given gas or mixture. Such potentials can then be 

associated with a particular molecular interaction (for example, nitrogen-nitrogen collisions). 

Since, as discussed in the foregoing, the Chapman-Enskog solutions of the Boltzmann equation rely 

essentially on the principle of classical mechanics, it becomes evident that some corrections must be 
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introduced in such solutions at a certain stage to account for the main findings of quantum 

mechanics as illustrated in the preceding section.  

Eucken [101] was the first to make the formula for thermal conductivity more accurate for the case 

of polyatomic (including diatomic) molecules by proposing that the fluxes of energy transferred by 

the translational and internal (both rotational and vibrational) degrees of freedom should be treated 

separately. In addition to having kinetic energies of translational motion, polyatomic gas molecules 

have energies of vibration and rotation, and any calculation of the thermal conductivities of such 

gases would have to take into account the effective exchange of these kinds of energies during 

collisions between molecules. 

Eucken suggested an approximate expression for the thermal conductivity of gases for which a large 

number of collisions are needed in order to produce any considerable change in the internal energy. 

More specifically, he divided  into two non-interacting parts, transl and int, which are the 

conductivities due to the transport of translational and internal energy, respectively; similarly, he 

divided Cv in two parts. For a monoatomic gas,  is very nearly equal to 5Cv/2; Eucken assumed 

by analogy transl =5Cvtransl/2.  On the other hand, since, in principle, there is a weak correlation 

between the speed of a molecule and its internal energy, Eucken also assumed int =Cvint (the 

assumption is equivalent to supposing that the mean free paths effective in the transport of 

momentum and internal energy are equal). 

 



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
  int2

5
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However, for nearly smooth molecules the transport of internal energy takes place by the diffusion 

of molecules from one part of the gas to another, carrying with them the mean internal energy of the 

region in which they originate. This means that the free path effective in the transport is that 

effective in diffusion, and one should write int = D11Cvint., thereby leading to the socalled 

modified Eucken expression: 

 

int112

5
VVtransl CDC            (B3) 

 

The modified Eucken approximation (eq. (B3) neglects the effects of inelastic collisions on the 

thermal conductivity. Such collisions introduce a coupling between the translational and internal 

components of the thermal conductivity; this effect tends to reduce the total thermal conductivity 

below the value (eq. (B3)) predicted by the modified Eucken approximation. These aspects have 

been treated in the literature for various polyatomic gases near room temperature. It. has been found 

(Mason and Monchiek [102]; Monchick et al. [103]) that the errors in equation (B3) may approach 

10 to 20 percent when there is a rapid exchange of energy between the internal and translational 

states through inelastic collisions, as is normally the case for rotational excitation in low-
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temperature polyatomic gases. However, the errors become smaller when the exchange is less rapid, 

and are negligible when 20 or more collisions are required for the exchange of energy between 

internal excitation and translation. The effects of inelastic collisions on the thermal conductivity of 

high-temperature air have apparently never been treated in detail. However, it appears that the 

inelastic cross sections should, in general, be small enough to make errors in the modified Eucken 

approximation (eqs. (B3)) negligible for air at temperatures greater than about 1000 K. 

Following these theoretical elaborations, even more physically accurate models have been 

elaborated over recent years with an explicit identification of the distinct contributions due to the 

translational, rotational and vibrational modes.  

To the present day, it is widely recognized that internal degrees of freedom are involved in different 

ways in the transfer of momentum and energy by the molecules. They play virtually no part in 

viscosity but have a very strong influence on the thermal conductivity. Moreover, the internal 

energy is known to contribute, proportionately, rather less to the thermal conductivity than does the 

translational energy. 

In the present work, in particular, we follow the procedure of Gnoffo et al. [104]. Related 

computations require essentially the evaluation of two modified collision terms (1) and (2), which 

in turn are linked to the collision integrals by the relationships: 
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)2,2()2( ~
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where, as outlined before, the collision integrals )1,1(~  and )2,2(~  are weighted averages of the 

cross sections that can be determined using several different methods usually relying on modeling 

the interaction potential for a pair of particles and integrating the differential cross-section obtained 

from that potential. 

The viscosity can be expressed as 
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The overall thermal conductivity is expressed as the sum of three contributions, each accounting 

separately for the effect of a specific energy mode: 

 

vibrrottransl             (B7) 

 

The thermal conductivity for the translational mode can be calculated by, 
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by which the reader will easily realize that the relationship transl =5Cvtransl/2 (as it was in the 

original Eucken’s model) still holds. Unlike the (original or modified) Eucken’s model, however, in 

order to correctly take into account the partial excitation of the vibrational mode, the two 

contributions brought to the thermal conductivities by the transport of internal energy are modelled 

here separately. While, the thermal conductivity for the rotational mode is given by, 
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the thermal conductivity for the vibrational mode reads, 
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Accordingly the effective Prandtl number reads: 
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For what concerns the evaluation of collision integrals we refer directly to the excellent data 

reported by Gupta et al. [86], where such integrals were expressed in logarithmic form as follows: 
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22)2,2(~ ED Tae ,     22
2

22 lnln CTBTAE        (B13) 

 

Where e = 2.71828 and a is a scale factor (a=10-20 to have the resulting cross sections in m2) and the 

coefficients A, B, C and D are given in Tables B1 and B2 (by expressing the molar mass m in kg 

mol-1, the Boltzmann constant k in J  K−1, the Avogadro number NAV in mol-1, and the collision 

integrals in m2, the above equations give  and  in Kg m-1s-1 and, J m-1s-1K-1, respectively). 

 

Table B1: Curve-fit constants for collision cross-section )1,1(~  up to T= 30000 [K] 

 

Gas A B C D 

N2 0 -0.0112 -0.1182 4.8464 

O2 0 -0.0410 0.4977 1.8302 

N 0 -0.0033 -0.0572 5.0452 

O 0 -0.0034 -0.0572 4.9901 

 

Table B2: Curve-fit constants for collision cross-section )2,2(~  up to T= 30000 [K] 

 

Gas A B C D 

N2 0 -0.0203 0.0683 4.0900 

O2 0 -0.0485 0.6475 1.2607 

N 0 -0.0118 -0.0960 4.3252 

O 0 -0.0207 0.0780 3.5658 

 
 

Although the data in these Tables have been reported for Nitrogen and Oxygen only, the general 

framework developed in this paper can be used in principle for any monoatomic or diatomic gas, 

the number of parameters to be provided in input being limited to a set of six curve-fit constants for 

the collision cross-sections. 
 
 
 


