Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Methyl group influence on the formation of CuI complexes with thio-pyridine ligands

Caradoc-Davies, P.L. and Hanton, L.R. and Hodgkiss, J.M. and Spicer, M.D. (2002) Methyl group influence on the formation of CuI complexes with thio-pyridine ligands. Journal of the Chemical Society, Dalton Transactions, 2002 (8). pp. 1581-1585. ISSN 0300-9246

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In order to investigate the effect of methyl group substitution adjacent to a pyridyl N donor, three ligands were synthesised and complexed with CuI in a 1:2 ratio. The crystal structures of three CuI complexes were determined. The dimethylated ligand bis(6-methyl-2-pyridylmethyl)sulfide (L-1) gave rise to a tetranuclear complex with two Cu2I2 bridges in which the Cu centres were four-coordinate. The asymmetric ligand 2-(6-methylpyridyl) methyl(2-pyridyl) methylsulfide (L-2) gave a tetranuclear complex which contained two parallel Cu2I2 bridges. In each Cu2I2 bridge, one Cu centre was three- and the other four-coordinate. In contrast, the ligand bis(2-pyridylmethyl) sulfide (L-3), with no Me substitution, gave rise to a one-dimensional coordination polymer with CuI chains. It was found that the differences in the complexes were a result of both the electronic and steric effects arising from the Me substitution of the pyridine donors and that no one effect completely dominated.