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Abstract:  This paper deals with the planar closed loop linkage consisting of a series 

of scissor-like elements connected by revolute joints. Because every generalized 

angulated element (GAE) subtends a constant angle during the motion, every angulated 

link was assumed as a PRRP linkage which has two prismatic joints and two revolute 

joints. Therefore, the two PRRP linkages of the GAE are individually movable with a 

single degree of freedom. The mobility of two types of GAEs was investigated with the 

method based on the screw theory. It has been proven that both types of GAEs are 

movable because the terminal constraints exerted to the common joint by the two 

linkages are equal. 
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1. Introduction 

Foldable structures, which can be transformed from a closed configuration to a 

expanded form, are developed from the earliest modern stages with Pinero’s movable 

theater in 1961 [1]. Especially during the last decade, the retractable roof structures are 

widely used in long-span space structures [2]. On the other hand, with the further 

development of aerospace science and technology, deployable structures are of even 

greater interest in aerospace industries [3, 4].  

Generally, the deployable structure based on the scissor-like element is the most 

commonly used form in engineering [5-8]. A scissor-like element in two dimensional 

forms is shown in Fig.1 (a). The axis of the revolute joint is perpendicular to the plane 

of the structure. The element has one degree-of-freedom and can be folded and 

deployed freely. Besides the foldable truss and dome structures [9], Zhao et al. [10, 11] 

proposed a foldable stair, which consists of a number of identical deployable 

scissor-like elements. In the early 1990’s, Hoberman [12, 13] invented and patented a 

method for constructing loop assemblies formed by the modified scissor-like element, 

which consists of a pair of identical angulated rods connected by a revolute joint as 

shown in Fig.1 (b). Therefore, the unit is also called angulated scissor element or 

Hoberman’s unit. You and Pellegrino [14] noted that the unit subtends a constant angle 

as their rods rotate while maintaining the end pivots on parallel lines. Thus the 

Hoberman’s unit can create a closed-loop mechanism, which is called Hoberman’s 

Linkage as shown in Fig.2. They also proposed two types of generalized angulated 

elements (GAEs), which subtend a constant angle during folding, but afford much 
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greater freedom of shapes than Hoberman’s unit. The triangles of the two angulated rods 

of Type I GAE are isosceles triangles, i.e. AE=DE and BE=CE, as shown in Fig.3. The 

triangles of the two angulated rods of Type II GAE are similar triangles, i.e. 

AE/BE=DE/CE and ∠AEB=∠DEC. As shown in Fig.4. the lengths of BE and AE are p 

and q. For Type II GAE, AE/BE=DE/CE=w. Then the lengths of CE and DE are wp and 

wq. The planar closed loop linkages which include Type I GAEs and Type II GAEs are 

given in Fig.5.  

The focus of this paper is on the mobility analysis of this planar closed loop linkage. 

It is pertinent to point out that the kinematic treatment of linkages is receiving 

increasing attention in recent years [15-18]. Langbecker [5] proposed the foldability 

equation of deployable scissor structures, which is formulated using a purely geometric 

approach. Patel and Ananthasuresh [16] presented a kinematic theory behind 

Hoberman’s and other inventions related to planar, radially foldable linkages. They 

showed that known types of foldable linkages can be derived by using a simple 

algebraic equation and even simpler design criteria. Based on the corresponding 

mobility conditions, Mao et al. [17] produced mobile double chains with both even and 

odd number of intersecting scissor-like pairs. A numerical algorithm was used by 

Nagaraj et al. [18] to evaluate the degree-of-freedom of pantograph masts by obtaining 

the null space of a constraint Jacobian matrix. Moreover, the principles of screw theory 

can also be used to study the degree-of-freedom of mechanism. Dai et al. [19-21] 

studied the mobility of a general type of foldable mechanisms using the screw theory. 

Zhao et al. [22] applied the screw theory to study the degree-of-freedom of simple 
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planar linkage and the mechanism theory of forming the spatial deployable units 

utilized in flat, cylindrical and spherical deployable structures. But they only focused on 

the scissor-like elements with straight rods. Then Cai et al. [23] extend this theory to the 

mobility analysis of the Hoberman’s angulated unit. Dai et al. [24] and Wei et al. [25, 

26] also used the reciprocal screws to study the mobility of the Hoberman structure and 

its variant. However, the scissor-like elements studied in the previous literatures are 

very simple and the geometry of these elements is symmetry. Two types of GAEs 

proposed by You and Pellegrino [14], which are not considered in these literatures, have 

asymmetry geometry and complex kinematic behavior. The mobility of GAEs will be 

studied in this paper with the screw theory. Prior to probing the mechanism theory of 

the GAE in Section 3, the kinematic description of GAEs will be given in Section 2. 

Section 4 draws conclusions. 

2. Kinematic description of GAEs 

As mentioned earlier, the main attribute of the planar closed loop linkages studied in 

this paper is that every angulated element subtends a constant angle during the motion. 

A simple generalized angulated element is shown in Fig.6a. The common revolute joint 

connects the two angulated rods of equal configuration. Therefore, points A, B, C and D 

can be seen as to be constrained to move along either of the dash lines P1 and P2. Then 

we can interpret an angulated link as a PRRP linkage shown in Fig. 6(b), which has two 

prismatic joints and two revolute joints. Thus the two PRRP linkages of the GAE are 

individually movable with a single degree of freedom. Therefore, the GAE will be 
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movable only when the two linkages share the same coupler curve at point E [16]. 

3. Kinematic analysis of GAEs 

The GAE can be considered as a parallel mechanism. It consists of the linkage ABE and 

linkage CDE, which are connected by a common joint E. Its mobility can be analyzed 

by the method based on the screw theory, as proposed in Ref. [24].  

It is assumed that the subtended angle between line AD and line BC is denoted by 2α. 

The orthogonal coordinate oxy is shown in Fig. 7. The axis ox is the bisector of angle 

∠BOD, and the axis oy is perpendicular to the ox axis in the mechanism plane. Now, the 

kinematics of the link ABE is studied firstly. 

There are a revolute joint and a slide joint at point A. Then the twists of the RP chain 

are given as 

 
R SA A A⎡ ⎤⎣ ⎦Φ Φ Φ＝                                (1) 

where 

{0 0 1 0}

{0 0 0 cos sin 0}
R

S

T
A A A

T
A

y x

α α

= −

= −

Φ

Φ
	

and xA, yA are the coordinates of point A. 

According to the screw theory, the terminal constraint screw matrices of the RP chain 

are immediately obtained by solving the reciprocal screw equations 

0T
A AΦ EΓ =                                  (2) 

where E is the swap operator and its formulation is expressed as follows 
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Therefore, the terminal constraints external to link ABE by the RP chain are 
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where fi (i=1, 2, 3, 4) represent the tensities of the screws and  
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    Similarly, the terminal constraints external to link ABE by the RP chain at point B 

are 

5

6
1 ,2 ,3 ,4

7

8

B B B B B

f
f
f
f

⎡ ⎤
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Γ Γ Γ Γ Γ，＝                          (4) 

where 
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T
B B B

T
B

T
B
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=

=

=

Γ
Γ
Γ
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, 

fi (i=5, 6, 7, 8) represent the tensities of the screws and xB, yB are the coordinates of 

point B. 

   We can find the terminal constraints exerted to link ABE using Eqs. (3) and (4) as 
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5
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f
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f f
f f
f f

⎡ ⎤
⎢ ⎥
⎢ ⎥
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Γ Γ Γ Γ Γ Γ，＝                      (5) 

Consequently, the twist of the link ABE can be solved with the reciprocal screw 

theory 

0T
ABE ABE =Φ EΓ                               (6) 

Then the twist of the link ABE, denoted by ФABE, is 

[ ]

[ ]

0
0
1

1 ( )cot
2
1 ( ) tan ( )
2

0

ABE A B B A

A B A B

y y x x

y y x x

α

α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬+ + −
⎪ ⎪
⎪ ⎪

− − +⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Φ                         (7) 

The twist of the revolute joint at point E can be given as 

{0 0 1 0}
R

T
E E Ey x= −Φ                          (8) 

where xE is the coordinate of point E in the ox direction. 

    Then the twist of joint E can be given as 

RE E ABE⎡ ⎤⎣ ⎦Φ Φ Φ＝                              (9) 

The terminal constraints exerted to joint E by the link ABE can be obtained by 

solving the reciprocal screw equation 

0T
E E =Φ EΓ                               (10) 

The terminal constraints are given as 
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        (12) 

Similarly, the terminal constraints exerted to joint E by the link CDE can be obtained 

as 
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       (14) 

It can be found that the GAE will be movable if the terminal constraints exerted to 

joint E by the link ABE and the link CDE are equal, which is  

'E EΓ Γ=                               (15) 

It can be seen from Fig.7 that the relations between the coordinates of the joints 

and the subtended angle α are 
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A D
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x x
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α

α

⎧
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⎪
⎨
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3.1 Type I GAE 

For Type I GAE, the triangle ΔADE and ΔBCE are isosceles. For triangle ΔADE, F 

is the midpoint of AD, and then line EF is perpendicular to line AD. Thus its line 

equation is 

coty x bα= +                                   (17) 

Substituting the coordinates of joint F in Eq. (17) leads to  

cot
sin 2
A Dx xy xα

α
+

= −                               (18) 

For triangle ΔBCE, G is the midpoint of BC, and then line EG is perpendicular to 

line BC. Similarly, the equation of line EG can be given as 

cot
sin 2
B Cx xy xα

α
+

= − +                                (19) 

Thus the coordinates of joint E can be obtained by Eqs. (18) and (19) as 

2

1
4 cos

1
4 sin cos

A B C D
E

B C A D
E

x x x xx

x x x xy

α

α α

+ + +⎧
=⎪⎪

⎨
+ − −⎪ =

⎪⎩

                      (20) 

Substituting Eqs. (16) and (20) into Eq. (12) leads to 

2
1

2

3 2

sec
4

2sin 2

2sin 2 cos

C D A B

C D A B

A C B D

x x x x

x x x x

x x x x

β α

β
α

β
α α

+ − −⎧
⎪
⎪

− + −⎪
=⎨

⎪
⎪
⎪
⎩

＝

－
＝

                       (21) 

The coefficients of Eq. (13) can be obtained by substituting Eqs. (16) and (20) into 

Eq. (14) 
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2
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4

'
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                      (22) 

Substituting Eqs. (21) and (22) into Eqs. (11) and (13) respectively, it can be found 

that the terminal constraints exerted to joint E by the link ABE and the link CDE are 

equal. That is to say the Type I GAE is movable. 

3.2 Type II GAE 

For Type II GAE, the geometric conditions are 

AE BE
DE CE
AED BEC

⎧ =⎪
⎨
⎪∠ =∠⎩

                               (23) 

Thus ΔADE and ΔBCE are similar triangles which leads to 

AE DE AD
BE CE BC

= =                                (24) 

This can also be rewritten as 

2 2 2 2 2 2

2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
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y y x x y y x x y y x x
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− + − − + − − + −

= =
− + − − + − − + −

        (25) 

Then the coordinates of joint E can be obtained with Eqs. (16) and (25) as 

tan
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E
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E
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α
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－
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－
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                         (26) 

Substituting Eqs. (16) and (26) into Eq. (12) leads to 
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β
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α

α α
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β

α
β

α
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=

＝

－

＝－
2 2 )

( )( )sin cos
C A B D B B C
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x x x x x x
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⎧
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+
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(27) 

The coefficients of Eq. (13) can also be obtained by substituting Eqs. (16) and (26) 

into Eq. (14) 

2 2 2 2

2

2 2 2 2

2 2

1

2

3

(2 cos 2 cos )1
2 ( )cos
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'

'
s )1
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2
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x x x x x x x x x x

α
β

β

α
α

α α
α α

α α
β

=

− + − − + + −
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+ − −
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＝

－

＝－
2 2 )

( )( )sin cos
C A C D B D A D

A B C D A C B D

x x x x x x x x
x x x x x x x x α α

⎧
⎪
⎪
⎪⎪
⎨
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⎪
⎪
⎪
⎪⎩

(28

) 

Combining and rearranging Eqs. (27) and (28) leads to 

1

2

1

3

tan

sin cos

A B C D

A C B D

A B C D

A C B D

x x x x
x x x x

x x x x
x x x x

β
α

β

β
α α

β

⎧
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⎪
⎨
⎪ =

+ − −
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−
−
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⎩

−
⎪

                      (29) 

1

2

1

3

' tan
'

' sin cos
'
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A C B D

x x x x
x x x x

x x x x
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β
α

β

β
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β

⎧
= −⎪

⎪
⎨
⎪ =
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+ − −

−
−

+ −

⎩

−
⎪

                      (30) 

From Eqs. (29) and (30) it can be shown that  

1 2 3 1 2 3' ' 'β β β β β β： ： ＝ ： ：                        (31) 

Substituting Eq. (31) into Eqs. (11) and (13), it can be found that the terminal 

constraints exerted to joint E by the link ABE and the link CDE are equal. That also 

concludes Type II GAE is movable. 

4. Conclusions 

In this paper, we studied the kinematics of generalized angulated scissor-like elements, 
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which forms the planar closed loop linkage. Firstly, every angulated rod was assumed as 

a PRRP linkage, which has two prismatic joints and two revolute joints. Thus the two 

PRRP linkages of the GAE are individually movable with a single degree of freedom. 

The mobility was analyzed with the method based on the screw theory. It has been 

shown that both types of GAE are movable because the terminal constraints imposed 

onto the common joint E by the link ABE and CDE are equal. It should be noted that a 

more general angulated scissor element containing intermediate parallelograms, as 

reported by You and Pellegrino [14], is yet to be proven with the help of this theory. 

Further extensions of this approach include the kinematic analysis of planar closed loop 

double chain linkages which satisfy the loop parallelogram condition [17] or other 

multi-loop linkages [27].  
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(a)                            (b)  

Fig.1 Scissor-like elements. 

 

 

(a)                                (b)  

Fig.2 Hoberman’s Linkage. 
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Fig.3 Type I GAE formed by angulated rods 

 

 

 

Fig.4 Type II GAE formed by angulated rods 
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(a) Type I 

 

(b) Type II 

Fig. 5 Planar closed-loop linkages with GAEs 
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(a)                                 (b) 

Fig.6 Kinematic description of GAEs. 

 

 

 

Fig.7 Geometric description of GAEs. 

 


