Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Brushstroke based sparse hybrid convolutional neural networks for author classification of Chinese ink-wash paintings

Sun, Meijun and Zhang, Dong and Ren, Jinchang and Wang, Zheng and Jin, Jesse S. (2015) Brushstroke based sparse hybrid convolutional neural networks for author classification of Chinese ink-wash paintings. In: Proceedings - International Conference on Image Processing, ICIP. IEEE, pp. 626-630. ISBN 9781479983391

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel stroke based sparse hybrid convolutional neural networks (CNNs) method is proposed for author classification of Chinese ink-wash paintings (IWPs). As Chinese IWPs usually have many authors in several art styles, this differs from real images or western paintings and has led to a big challenge. In our work, we classify Chinese IWPs of different artists by analyzing a set of automatically extracted brushstrokes. A sparse hybrid CNNs in a deep-learning framework is then proposed to extract brushstroke features to replace the commonly used handcrafted ones such as edge, color, intensity and texture. Using 120 IWPs from six famous artists, promising results have been shown in successfully classifying authors in comparison to two other state-of-the-art approaches.