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Fourier transform infrared (FTIR) spectroscopy has long been established as an analytical tech-
nique for the measurement of vibrational modes of molecular systems. More recently, FTIR has
been used for the analysis of biofluids with the aim of becoming a tool to aid diagnosis. For the
clinician, this represents a convenient, fast, non-subjective option for the study of biofluids and the
diagnosis of disease states. The patient also benefits from this method, as the procedure for the
collection of serum is much less invasive and stressful than traditional biopsy. This is especially
true of patients in whom brain cancer is suspected. A brain biopsy is very unpleasant for the pa-
tient, potentially dangerous and can occasionally be inconclusive. We therefore present a method
for the diagnosis of brain cancer from serum samples using FTIR and machine learning tech-
niques. The scope of the study involved 433 patients from whom were collected 9 spectra each in
the range 600-4000 cm~!. To begin the development of the novel method, various pre-processing
steps were investigated and ranked in terms of final accuracy of the diagnosis. Random Forest
machine learning was utilised as a classifier to separate patients into cancer or non-cancer cat-
egories based upon the intensities of wavenumbers present in their spectra. Generalised 2D
correlational analysis was then employed to further augment the machine learning, and also to
establish spectral features important for the distinction between cancer and non-cancer serum
samples. Using these methods, sensitivities of up to 92.8% and specificities of up to 91.5%
were possible. Furthermore, ratiometrics were also investigated in order to establish any correla-
tions present in the dataset. We show a rapid, computationally light, accurate, statistically robust
methodology for the identification of spectral features present in differing disease states. With cur-
rent advances in IR technology, such as the development of rapid discrete frequency collection,
this approach is of importance to enable future clinical translation and enables IR to achieve its
potential.
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1 Introduction

Cancer is a leading cause of death and ill health across the mod-
ern world. Approximately 14 million new cases and 8.2 million
deaths attributed to cancer occurred in 2012.! It is important that
we have methods to quickly and easily diagnose types of cancer,
to ensure the best treatment is provided for patients. Among all
types of cancer, brain tumours stand out as a particular challenge
to treat effectively. This category of cancer is one of the few which
have a higher mortality than incidence rate. For example, in the
UK in 2006-2010 brain cancer had an incidence of 18% among
young cancer sufferers, but accounted for 34% of mortality.% De-
spite the relatively high incidence of brain cancer in general, its
causes are not fully understood, though some have been identi-
fied.3 Malignant gliomas cause on average a 20-year reduction in
life expectancy* and among those, high grade Glioblastoma Mul-
tiforme (GBM) represents a particularly bleak outcome with just
6% of adults surviving more than 5 years after diagnosis.> There
are two main classes of brain tumour, namely primary and sec-
ondary brain tumours. The distinction between these two is the
location in the body from which the cancer originated. Primary
tumours (e.g. GBM) originate from within the central nervous
system (CNS), with gliomas originating from the tissue which sur-
rounds and supports the neurons in the brain, i.e. glial cells.®
Secondary (metastatic) tumours originate from elsewhere in the
body, and are transported to the brain. In the UK, around 13,000
people are diagnosed annually with brain cancer?, of which about
67% are secondary tumours.® Of these secondary tumours, the
breakdown of origins is as follows: Lung (50%), breast (15-25%),
skin (melanoma) (5-20%) and all others (5-30%).° By identify-
ing the organ of origin, treatment efficiency and patient survival
can be increased, but the primary location is unknown in around
15% of metastatic cases.

Current diagnostic methods are time consuming, expensive and
require highly skilled practitioners to interpret them. In the case
of brain and CNS cancers, the test usually consists of an MRI or CT
scan in the first instance. 1% These types of complex results can be
subjective in their conclusions. (The CT scan itself has disputed
health risks. 11:12) In some cases, these tests prove to be inconclu-
sive, and warrant further investigation. Upon such an occurrence
a biopsy of the suspected tumour is indicated. A biopsy of brain
tissue represents an invasive and stressful procedure for patients,
again needing highly skilled surgical and pathological expertise.
Even when a biopsy is taken, there can be discrepancies in the
interpretation of results between medics. Bruner et al. found that
of 500 biopsy cases, 214 (42.8%) had a degree of disagreement
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between original and review diagnoses.!3 In England in the pe-
riod 2006-2010, 54% of cancer cases were diagnosed following a
routine or urgent GP referral, either as part of the "two week wait"
system or otherwise. 14 The two-week wait system is an urgent re-
ferral (less than two weeks of waiting time for a consultation) of
a patient to a specialist, should cancer be suspected by a GP. How-
ever, 23% of cancer cases in England during this time period were
diagnosed after presenting as an emergency. 4 Concentrating on
brain and CNS cancers, the National Cancer Intelligence Network
(NCIN) statistics show that more than half (58%) of brain and
CNS cancers are diagnosed through presentation at emergency
facilities, with the "two week wait" system only accounting for 1%
of the total. ' In these later diagnoses, prognosis is much poorer
for all types of cancer. As well as having on average a later sec-
ondary care diagnosis, brain tumours are very difficult to identify
in primary care and a high index of suspicion is required. A sur-
vey carried out on behalf of The Brain Tumour Charity (UK) found
that 38% of people living with a brain tumour had visited their
GP more than 5 times before being diagnosed. 1 Overall, the cur-
rent system for the detection and diagnosis of brain tumours in
general is not satisfactory. A reliable, fast and simple method to
screen for these types of cancer would reduce time before diag-
nosis and therefore increase survival rates, as many therapies are
more effective when started early.

IR spectroscopy has previously been investigated as a cancer
diagnosis tool. Haka et al. showed the merit of human tissue
spectroscopy in distinguishing breast tumours from normal tis-
sue. 17 Laboratory based proof of principle studies have shown
the ability of serum spectroscopy to diagnose cancerous disease
states, such as those reviewed by Kondepati et al. '8 Pichardo et
al. were also able to use spectroscopy together with machine
learning to detect breast cancer. 1° Most of these investigations in
the literature focus on very specific types of cancerous diseases
states, or require tissue samples from suspected tumours to aid
in diagnosis. A broader approach based on IR spectroscopy of
serum samples could be an ideal solution. Serum can be acquired
from blood samples in a much less invasive procedure. Backhaus
and Mueller et al. demonstrated a method to successfully de-
tect breast cancer using serum samples and IR spectroscopy. The
sensitivity and specificity achieved were 98% and 95% respec-
tively.20 Gajjar et al. used FTIR of serum and plasma samples
to distinguish ovarian and endometrial cancer patients from con-
trol patients.?! They used various feature extraction methods to
obtain very promising results from a small pilot study. Ovarian
cancer was detectable with 95% correct classification.

Our previous research has shown the ability of combined FTIR
and machine learning to identify differing levels of cytokine and
angiogenesis factors in patients with glioma. 22 The Bioplex study
provided sensitivities and specificities as high as 88% and 81%
respectively. Furthermore, sensitivities and specificities of 87.5%
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and 100% were achieved when combining ATR-FTIR with Sup-
port Vector Machines (SVM). A similar approach was employed
to distinguish differing grades of glioma (high-grade and low-
grade) from non-cancer.® Sensitivity and specificity were 93.75%
and 96.53% respectively.

h 622725 with a

We now build on our previous diagnostic researc
larger dataset, a different approach to machine learning and the
technique of generalised 2D correlational analysis. Some stud-
ies have used "black box" machine learning.22-26 While this can
give good predictions, it does not give full insight into the actual
features being used for classification, which in turn does not aid
clinical translation. In order to translate novel technologies to the
clinic, further information is required to identify spectral peaks
that provide diagnostic information. In addition, identifying rel-
evant features will enable future rapid collection protocols via
techniques such as Quantum Cascade Laser IR spectroscopy. 27-28
Focusing on the salient information of a spectral dataset also pro-
vides enhanced diagnostic accuracy due to the removal of ex-
traneous information that is clouding the diagnosis based upon
biological variance. Dorling and Baker2® describe the utility of
serum spectroscopy in the clinic, in order to achieve this we have
to provide rapid, accurate and information-rich analysis to cor-
rectly describe the difference in disease state molecular species.

IR spectroscopy of biological materials is not straightforward.
Serum itself is a very complex mixture of various components. In
addition to the chemical complexity of serum, optimum sample
preparation techniques and their effect on the spectrum are not
known. The group has therefore established guidelines by means
of a dilution study coupled with a comparison of ATR-FTIR and
High Throughput (HT)-FTIR.30 It was found that 3-fold dilution
was optimal for HT-FTIR in terms of scores in a spectral qual-
ity test. ATR-FTIR although slower than HT-FTIR, proved to be
the best when investigating discernible features. Also previously
established by the group was the optimum drying time of 8 min-
utes.©

Generalised 2D correlation spectroscopy is a data analysis
method developed by Noda3!, as distinct from ultrafast 2D-IR
spectroscopy, which measures vibrational couplings in an analo-
gous way to 2D-NMR.32 Noda’s generalised method allows ex-
ternal perturbations (temperature, concentration, pH etc) to be
used to obtain information about the effect of external influences
on spectra, and does so by offering two main types of correlation
which are synchronous and asynchronous. Synchronous spectra
represent coinciding changes in different spectral regions. The
synchronous spectrum is symmetrical, and contains peaks (called
autopeaks) along the diagonal. The strength of the highlighted
areas along this line represent the band strength of the IR regions.
Peaks off the diagonal (called cross-peaks) show correlation be-
tween underlying 1D spectral peaks. If the sign is positive (blue
in this work), then both 1D peaks are changing in the same direc-
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tion, either increasing or decreasing in intensity. Negative signs
(red) show that the 1D spectral peaks are moving in opposite di-
rections in terms of intensity. Asynchronous spectra represent se-
quential changes in the 1D spectra due to the perturbation. When
a cross-peak is of a positive sign, then a peak from the first spec-
trum is changing before a band from the second spectrum, and
vice versa. A feature of these asynchronous spectra is that they
contain no autopeaks, and are anti-symmetric with respect to the
diagonal.

The type of machine learning used in this work (Random For-
est) is interpretable, and results in a better understanding of the
relative importance of distinguishing features. Furthermore, we
combine this method with 2D correlational analysis. The novel
combination of these usually disparate methods allows for both
the building of an accurate classifier, and the characterisation of
spectral features important for diagnosis.

2 Materials and Methods

2.1 Spectral Collection

The research described in this paper was performed with full ethi-
cal approval (Walton Research Bank BTNW/WRTB 13_01/BTNW
Application #1108). The dataset consists of IR data from serum
samples of 433 patients with differing brain cancer diagnoses
taken at the Royal Preston Hospital, in conjunction with Brain
Tumour North West. The entire dataset comprises 9 spectra for
each patient. These 9 spectra were generated from 3 IR passes
of 3 separate sample preparations. Each sample of 1ulL, was al-
lowed to dry for 8 minutes before spectra were collected. Data
was gathered using an Agilent Cary-600 Series FTIR spectrome-
ter with a PIKE Technologies MIRacle™single-reflection ATR util-
ising a diamond crystal plate. Spectra were subject to Agilent
Resolutions ATR correction. Spectra were obtained in the range
600-4000 cm~!, with a resolution of 1.926 cm™!. All samples had
been frozen before spectral collection, and defrosted immediately
prior to the measurement. Figure 1 shows the organisation of the
dataset, while Table 1 shows the number of patients per disease
category.

Table 1 Breakdown of patient numbers according to disease state

Disease State Number of Patients

Cancer 311
Non-Cancer 122
Primary Brain Cancer 134
Metastatic Brain Cancer 177
High Grade Glioma 64
Low Grade Glioma 23
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Fig. 1 Hierarchical categories of disease states
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Fig. 2 All spectra with various pre-processing. Red - raw data, magenta
- normalised spectra, green - normalised first derivative and blue -
normalised second derivative.
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2.2 Pre-processing

All pre-processing was undertaken using Matlab.33 All spectra
were vector normalised, and optionally a first or second derivative
taken using 5 smoothing points (Savitzky-Golay method). During
the pre-processing phase, any spectra displaying gross spectral
error were discarded. These erroneous spectra amounted to 2
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whole patients(18 spectra) and 7 other spectra, for a total of 25
spectra being removed. One of the patients for which all spec-
tra were erroneous was from the Metastatic Brain Cancer group,
and the other from the Low Grade Glioma group. For the anal-
ysis this left 309, 176 and 22 patients in the Cancer, Metastatic
and Low Grade Glioma groups respectively. Other types of pre-
processing were tried; (raw data and first derivative, both with
or without normalisation) and the normalised second derivative
with 5 smoothing points was found to be the best in terms of
statistical results and clarity of Random Forest Gini importance
peaks. (See section 2.5 for explanation of Gini importance.) The
data was split into two sections after the removal of the CO, re-
gion. The regions considered were 900-1800 cm~! and 2400-
4000 cm™!. See Figure 2 for an overview of the the spectra during
pre-processing. Figure S1 in the E.S.I. shows averaged cancer and
non-cancer spectra together with standard deviations for each.

2.3 Ratios

Ratios of ranges of wavenumbers were taken from the raw spec-
tral data, after removal of erroneous spectra. These were cal-
culated using a simple sum of intensities of the relevant regions
of the spectra. Ratios such as these have been previously shown
to be important in diagnosis of various diseases from IR spec-
tra. Choice of wavenumber ranges was steered by previous litera-
ture, as well as wavenumber ranges found to be important to our
machine learning classification. Ratios in the range 1030-1080
relating to glycogen and phosphate vibrations, are thought3“ to
be useful in distinguishing malignant and non-malignant disease
states. Ratios 3160:3170 and 3190:3200 were found by Bassan
et al. 35 to be leading discriminatory metrics in malignant breast
cancer detection. The ratio listed as "Navarro" was investigated in
order to obtain protein:lipid ratios for the spectra as suggested by
Navarro et al. 3 Another protein:lipid ratio was also investigated,
this was established by Baker et al. 37 as a protocol. Furthermore,
we consider ratios BRS1-4 which were chosen from regions im-
portant for the classification of cancer/non-cancer which became
apparent from preliminary RF models.

Table 2 Ratios investigated for correlation

Ratio ID Wavenumbers Regions
1030:1050 1030:1050 Carb.
1030:1080 1030:1080 Carb.-Phos.
1050:1080 1050:1080 Phos.
3160:3170 3160:3170 Alcohols
3190:3200 3190:3200 O-H-0O
Navarro X(1650-1700):x(1730-1800) Protein:Lipid
Baker many* Protein:Lipid
BRS 1 ¥(1600-1680):X(1500-1580) Amidel:Amidell
BRS 2 ¥(1220-1280):X(1380-1420) Phos.A:COO™
BRS 3 ¥(1000-1050):X(1430-1470) Carb.:CH,
BRS 4 ¥(1000-1050):X(2830-3000) Carb.:CH,,CHj3
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#[£(1380-1420)+X(1480-1580) +X(1600-1680)1:[£(1430-1470) +X(1720-
1760)+X(2830-3000)]

2.4 Random Forest

The main method employed for classification in this study was
Random Forest(RF),38 as implemented in R. The specific pack-
age used was randomForest, by Liaw and Wiener.3? This is a ma-
chine learning method used to find features associated with input
classes. From the training set, RF builds a "forest" of regression
trees using the CART (Classification and Regression Trees) algo-
rithm. There are three possible training parameters for Random
Forest: ntree - the number of trees in the Forest; mtry - the num-
ber of different descriptors tried at each split; and nodesize - the
minimum node size below which leaves are not further subdi-
vided. In our work, the number of trees generated per classifica-
tion was 500. The variable 'mtry’ was one third of the number
of descriptors and 'nodesize’ was 5. These are the default set-
tings for the package, and have proved to be optimal in our pre-
vious studies using randomForest. 4042 training:test set split was
80:20, respectively. 5-fold cross validation of the training set was
also carried out.

The Random Forest machine learning method (MLM) was cho-
sen for this work for several reasons. Firstly, RF is easily scalable
when compared to other MLM. This means that the same (or very
similar) parameters can be used in the future with larger datasets.
Secondly, RF has easily interpreted results when used with the
Gini impurity metric (see section 2.5 for an explanation of the
Gini metric). This meant that important distinguishing wavenum-
bers were clearly defined, and their relative importance was read-
ily established. Third, RF is known for being able to robustly han-
dle outliers in the input space. This property potentially allows
classification of spectra without heavy pre-processing, whereas
other MLM may require it. Finally, RF deals well with missing
values from input classes. This was especially important to our

work, as the wavenumber range 1800-2400 cm~ ! was removed.

For the interpretation of the RF outcome, two main groups of
results were considered. Firstly, a selection of statistical metrics
were generated to give an in-depth analysis of the accuracy and
reliability of each classification. These were based upon true pos-
itive(TP), true negative(TN), false positive(FP) and false nega-
tive(FN) predictions as well as "real"(actual number of positives
and negatives in the dataset) positives(P) and negatives(N). The
abbreviation MCC stands for Matthews Correlation Coefficient.

Number of Positives (P) = TP+ FN (@D
Number of Negatives (N) = TN + FP 2)
TP TP
Sensitivity = — = ————— 3
ensitivity P (TP+FN) 3
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TN TN

Specificity = LN _ TN
pecificity = o = TN FP) “)
Positive Precision — —— (5)

(TP+FP)
Negative Precision = ﬁ (6)
Accuracy = (IP+TN) 7

(TP+FP+FN+TN)
TPxTN)— (FPxF
MCC = (TP+TN) —(FP+FN) ®)
\/(TP+FP)(TP+FN)(TN+FP)(TN +FN)
c
En=—

SE; NG C))

In the statistical results tables below, TS and CV represent re-
sults for the test set and cross-validation respectively. The toler-
ances shown for each result are their standard errors, generated
according to equation 9, where SEy is the standard error of the
mean (of the 96 iterations), o is the standard deviation and n is
the number of samples.

2.5 Random Forest Feature Importance

Spectral feature importance results were obtained using the
combined mean decrease in Gini coefficient, with respect to
wavenumbers. This allowed an easily-interpreted result to be
found, and wavenumber ranges important to the classification
were ascertained. The Gini impurity of a node is dependent on
the probability of each possible outcome. For a single node 7 in
the RF classification, the Gini impurity is found by Equation 10
below, where g(7) is the impurity of node 7, n is the total number
of spectra at the node while ny and ng are the number of spectra
belonging to class A or B respectively; i.e. Cancer or Non-cancer.

g(m=1- (") - (")’ (10)

n n

Every time a node is split on a predictor (wavenumber), the
Gini impurity for the two child nodes is less than the parent node.
This is because the dataset is gradually being sorted into pre-
dicted classes, and becoming more homogeneous with respect to
the proportion of classes A or B. When node 7 is split, resulting
in two child nodes v and ¢, the change in Gini (Ag) is found by
Equation 11 where ny and ny are the number of spectra in nodes
v and ¢ respectively. The value of Ag is larger when a greater
change in impurity occurs after the split, thus allowing for the de-
crease in Gini to be used as a measure of importance of a certain
wavenumber.

Ag=g(7) - (nfv)g(v)* (L‘p) 8(9) an

n n

The overall Gini importance (G) of a particular spectral feature
0 is found by the sum across all nodes of each tree vy, and across
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all trees in forest @ (Equation 12).

%
G(0)=Y ) Agi; (12)
i=1j=1

These values are then averaged for the 96 independent classifi-
cations, to arrive at the Mean Decrease (Gini) used in the figures
presented in the Results and Discussion section.

2.6 Generalised 2D correlational analysis

2D correlation plots were generated with the program 2DShige, 43
and visualised in Matlab. Utilising the method developed by
Noda,3! generalised 2D correlation plots can be produced from
separate 1D IR spectra which highlight changes in these spectra
due to some perturbation (in this case, the perturbation was the
diagnosis of cancer or not). According to Noda’s Rules#* the syn-
chronous spectra can (qualitatively) show whether spectral inten-
sities at two different areas of the spectrum are changing in the
same direction, i.e. whether intensities are increasing or decreas-
ing simultaneously. If a cross-peak has a positive sign, the inten-
sities are both changing in the same direction, and in opposite
directions for a negative cross-peak. The asynchronous correla-
tions on the other hand show the sequential order of changes in
intensity. Both synchronous and asynchronous 2D plots were pro-
duced of normalised, first and second derivatives, both 900-1800
cm~! and 2400-4000 cm~! sections of the spectrum.

3 Results and Discussion

3.1 Random Forest Results

Results were obtained by combining the findings of 96 indepen-
dent RF models, and the statistics and important wavenumber
regions noted. 96 was found to be an adequate number of it-
erations through average convergence of test runs, the plot of
which can be found in the Supplementary Information of this ar-
ticle. The sections of the spectrum between 900-1800 cm~! and
2400-4000 cm~! were utilised. These sections were used in RF
both separately and together. Presented here are results using
normalised, first and second derivative spectra, as described in
the Pre-Processing section. All results are in terms of a binary
cancer/non-cancer classification.

3.1.1 900-1800 cm!.

Test set sensitivity steadily increased when increasing numerical
pre-processing from normalisation to first derivative to second
derivative (Tables 3-5). Sensitivities of 90.1%, 91.8% and 92.8%
were recorded for these pre-processing levels. A similar increas-
ing pattern is observed in the cross-validation set. Test set speci-
ficity showed a much more dramatic increase in percentage when
more pre-processing was applied. Values of 78.5%, 88.3% and
91.5% were observed across derivatives. A similar pattern was
again observed for the cross-validation result. Overall prediction
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accuracies (see Equation 7) were 86.9%, 90.9% and 92.4% for the
test sets, with again cross-validation keeping to the same trend.
Positive precision (Equation 5) was an area in which the classifi-
cation excelled, with values of 91.8%, 95.7% and 97.0% for nor-
malised, first derivative and second derivative respectively. Neg-
ative precision (Equation 6) was in general lower than positive
precision, with test set results being 74.6%, 79.5% and 81.2%. A
trend of increasing precision as higher-order derivatives were ap-
plied was again followed. Matthews correlation coefficient (Equa-
tion 8) was used as a general measure of quality of the classifi-
cation, with the same trend being recorded as the other metrics
across its test set values of 0.674, 0.776 and 0.811. A receiver
operator curve for the second derivative analysis is available in
Figure S2 of the supporting information.

3.1.2 2400-4000 cm .

In general, the pattern of normalised > first derivative > second
derivative did not hold for this section of the spectrum as it did
for the 900-1800 cm ™! section. For test set sensitivity, the highest
scores were recorded for the first derivative, with 87.5%, 89.7%
and 82.5% found for normalised, first and second derivative re-
spectively. Specificity (test set) followed the same pattern with
76.4%, 82.0% and 76.6%. Prediction accuracy (test set) contin-
ued the trend with 84.6%, 87.7% and 81.3% with cross-validation
results being comparable. Positive precision had a different trend,
this time with a score for normalised test set data of 91.6%, but
the first and second derivative test sets having an equal result of
93.7%. With negative precision for the test sets, normalised data
had a result of 67.7%, the first derivative a result of 73.0% and
a dramatically lower score of 51.1% for the second derivative.
The Matthews correlation coefficients show the general overall
trend that the first derivative gives a better classification than the
second derivative with this section of the spectrum, with test set
results of 0.615, 0.691 and 0.513 for normalised, first derivative
and second derivative respectively.

3.1.3 Both sections.

Overall, the scores and trend observed for the 900-1800 cm !
section hold true for when the two sections are combined into
a single classification. The metrics themselves had very similar
results to this section. The only notable exception to this is the
specificity metric for normalised data which did slightly better
than the 900-1800 cm ™! section alone. Specificity for test set and
cross validation set classifications were 78.5% and 76.8% for 900-
1800 cm~! but increased to 81.2% and 78.6% for the combined
dataset.

The normalised second derivative gave the best overall accu-
racy according to the statistical metrics which are presented in the
tables below. The first derivative results achieved a performance
between normalised spectra and second derivative in terms of
classification accuracy. The 2400-4000 cm~! section of the spec-
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Fig. 3 Gini Importance Chart - 900-1800 cm~! Second Derivative with Synchronous 2D plot
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Fig. 5 Gini Importance Chart - 2400-4000 cm~! Second Derivative with Synchronous 2D plot
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trum did not perform as well as the 900-1800 cm™! section, nor
did it add any accuracy when these two sections were combined
together.

Table 3 Statistical metrics for classification of cancer/non-cancer using
RF for normalised spectra

Metric 900-1800 cm~!'  2400-4000 cm~!  Both

Sensitivity TS 0.901+0.013 0.875+0.014 0.900+0.012
Sensitivity CV 0.899+0.006 0.872+0.007 0.897+0.006
Specificity TS 0.785+0.028 0.764+0.030 0.812+0.027
Specificity CV 0.768+0.014 0.733+0.016 0.786+0.014
Prediction Accuracy TS 0.869+0.003 0.846+0.003 0.877+0.003
Prediction Accuracy CV 0.863+0.001 0.836+0.001 0.868+0.001
Positive Precision TS 0.918+0.012 0.916+0.012 0.930+0.011
Positive Precision CV 0.912+0.006 0.905+0.006 0.922+0.006
Negative Precision TS 0.746+0.029 0.677+0.032 0.746+0.029
Negative Precision CV 0.739+0.015 0.6614+0.016 0.729+0.015
Matthews Correl. Coeff. TS ~ 0.67440.007 0.615+0.007 0.693+0.007
Matthews Correl. Coeff. CV  0.6594+0.003 0.58540.003 0.667 +0.003

Table 4 Statistical metrics for classification of cancer/non-cancer using
RF for normalised first derivative spectra

Metric 900-1800 cm™! 2400-4000 cm ™! Both

Sensitivity TS 0.918+0.011 0.897+0.013 0.912+0.012
Sensitivity CV 0.918+0.006 0.887+0.007 0.912+0.006
Specificity TS 0.883+0.022 0.820+0.027 0.875+0.023
Specificity CV 0.839+0.013 0.793+0.015 0.853+0.013
Prediction Accuracy TS 0.909+0.003 0.8774+0.003 0.90240.003
Prediction Accuracy CV 0.897+0.001 0.863+0.001 0.897+0.001
Positive Precision TS 0.957+0.008 0.9374+0.010 0.957+0.008
Positive Precision CV 0.941+0.005 0.928+0.005 0.948+0.005
Negative Precision TS 0.795+0.027 0.73040.030 0.769+0.028
Negative Precision CV 0.785+0.014 0.698+0.015 0.768+0.014
Matthews Correl. Coeff. TS ~ 0.776+0.007 0.6914+0.008 0.75540.008
Matthews Correl. Coeff. CV  0.7424+0.002 0.653+0.003 0.740+0.003

Table 5 Statistical metrics for classification of cancer/non-cancer using
RF for normalised second derivative spectra

Metric 900-1800 cm~'  2400-4000 cm~!  Both

Sensitivity TS 0.928+0.011 0.825+0.015 0.923+0.011
Sensitivity CV 0.929+0.005 0.82340.008 0.922+0.006
Specificity TS 0.915+0.019 0.766+0.035 0.914+0.018
Specificity CV 0.888+0.011 0.7304+0.018 0.892+0.011
Prediction Accuracy TS 0.9244-0.002 0.813+0.03 0.9214+0.002
Prediction Accuracy CV 0.918+0.001 0.80540.001 0.914+0.001
Positive Precision TS 0.970+0.007 0.937+0.010 0.970+0.007
Positive Precision CV 0.960+0.004 0.929+0.005 0.963+0.004
Negative Precision TS 0.812+0.026 0.511+0.034 0.804+0.026
Negative Precision CV 0.813+0.013 0.491+0.017 0.7924+0.014
Matthews Correl. Coeff. TS 0.811+0.006 0.513+0.008 0.805+0.006
Matthews Correl. Coeff. CV  0.795+0.002 0.4814+0.003 0.784+0.002

This journal is © The Royal Society of Chemistry [year]

3.2 Spectral Features

Table 6 gives an overview of the identified wavenumber ranges in
order of importance, together with their regions in the IR spec-
trum for second derivative data. The column "XGini" in the table
is a summation of the (average over 96 RF classifications) mean
decrease in Gini for each wavenumber within a given range. The
most prominent ranges in terms of RF importance are the carbo-
hydrate region at 997-1003 cm™!, the phosphate region at 1290-
1294 cm~! and the lipid region at 1462-1464 cm~!. These ar-
eas of importance are closely followed by other carbohydrate and
protein modes.

Table 6 Identified important wavenumber ranges for the second
derivative RF. The ranges are presented in order of decreasing
importance to the classification.

Wavenumber Range Y.Gini Tentative Assignment
997-1003 cm™! 131.8 Carbohydrate
1290-1294 cm ™! 93.1 Phosphate
1462-1464 cm™! 78.7 Lipid CH,
1527-1533 cm ™! 71.9 Amide II
1028-1034 cm™! 59.8 Carbohydrate
1387-1390 cm™! 46.7 Protein COO~
1194-1198 cm™! 41.9

1373-1377 cm™! 39.9 Protein COO~
1080-1082 cm™! 31.4 Phosphate
1280-1282 cm™! 28.6

1093-1095 cm ™! 24.0

Figures 3, 4, 5 & 6 show the mean decrease in Gini coeffi-
cient for all wavenumbers in a range, alongside generalised 2D
correlation plots for the same data. In the 2D correlation plots,
cancer spectra are on the horizontal axis, and non-cancer spec-
tra are on the vertical. Data for the generalised 2D correlational
analysis were obtained by averaging subsections of intensities in
the dataset. In the figures showing the 2D correlation of the
second derivative spectra, the averages were as follows: Figure
3: Synchronous spectrum of the average of all cancer spectra in
the range 900-1800cm~! vs all non-cancer spectra in the same
range. Figures 4, 5 & 6 use the same pattern of average inten-
sities of cancer and non-cancer spectra in the same wavenumber
range, for both synchronous and asynchronous 2D plots. In the
E.S.I, Figures S4 to S11 show similar plots for normalised and
first derivative data. Figures S12 to S14 show average cancer
and non-cancer spectra plotted together with Gini importance for
normalised, first and second derivative spectra.

Usually when these 2D plots are generated, an incremental
variable is used for the perturbation between the two sides of
the correlation (eg temperature, pressure etc). In the case of this
work, the perturbation is whether the patient has cancer or a nor-
mal diagnosis. It should also be borne in mind that the two in-
putted comparison spectra were averages of the whole class; i.e.
Cancer and non-cancer. However, some information can still be
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gleaned from Noda’s method in this scenario. The synchronous
spectrum shows whether two wavenumber ranges increase or de-
crease in intensity in the same or opposite directions. This is as
normal for a synchronous generalised 2D correlation plot. The
asynchronous spectrum is more subtle in its interpretation with a
correlation such as this. Noda’s Rules#* show whether an inten-
sity change occurs before or after another, with an incremental in-
crease of some outside perturbation. There is no such incremental
increase of a perturbation in this work, only a binary cancer/non-
cancer descriptor. Therefore, the asynchronous plots serve as ex-
tra clarification to further highlight differences in the averaged
spectra, without the influence of auto peaks. This therefore can
provide a better means to identify major regions of the spectra
which are responsible for the cancer/non-cancer distinction.

In Figures 3 & 4, it can be seen that the peaks at around 1640
and 1530 cm ™! show a strong correlation with each other. Only
the peak centred around 1530 cm ™! appears as a strong spike in
the RF classification. However, these two peaks are themselves
correlated to other wavenumber ranges which are heavily fea-
tured in the RF study. In Figures 5 & 6, a similar situation can be
seen with the two cross-peaks around the 2850 and 2930 cm ™!
areas. This time however, both of these peaks also show strong
peaks in the mean decrease in Gini.

The coupling together of the RF importance charts and the 2D
correlations is helpful for further clarification of where the dif-
ferences in the spectra lie, and whether these are reproduced in
both studies. Another helpful piece of information from this is
whether the major features of the RF importance charts match
up to areas of major difference in intensities at certain wavenum-
bers. This allows further characterisation of the RF results, and
gives clues as to whether minor or major differences in spectra
are responsible for the greatest discrimination. Overall, the RF
and 2D correlations are showing the same features via very dif-
ferent analyses, providing us further confidence due to the use of
orthogonal techniques.

10| Journal Name, [year], [vol.], 1-21

3.3 Ratiometrics

Fig. 7 Pearson Correlation Matrix of ratios taken from the raw data

1030: 1030: 1050: 3160: 3190:

1080 1050 1080 3170 3200 Navarro Baker BRS1 BRS2 BRS3 BRS4

1080 1 091 076 039 021 -033 -018 -0.10 0.18 083 0.72
1030
LN 091 1 042 032 010 -027 -0.20 0.00 011 088 0.73
1050
LU 076 042 1 032 028 -029 -008 -020 021 043 042
3160:
M 039 032 032 1 085 051 033 -062 025 040 035
3190:
LU 021 010 0.28 0.85 1 044 037 080 039 015 0.12

Navarro

-0.33 -0.27 029 051 -0.44 1 064 023 -030 036 -0.11

Baker

-0.18 -0.20 -0.08 033 -037 0.64 1 0.15 0.06 -0.08 0.30
BRS1

-0.10 0.00 020 062 -0.80 0.23 0.15 1 053 -005 -0.10
BRS2

0.18 0.11 021 0.25 039 -030 0.06 -0.53 1 036 0.37
BRS3

0.83 0.88 043 040 0.15 -036 -0.08 -0.05 0.36 1 0.90
BRS4

072 073 042 035 012 011 030 010 037 0.90 1

A Pearson correlation study was carried out on the ratios iden-
tified in the Materials and Methods section. Of particular inter-
est from this correlational analysis of wavenumber ratios is the
strong anti-correlation between BRS1 and 3190:3200 cm™~'. This
may suggest a linked ratio apparent in our dataset, which spans a
wide range from the Amide regions to the hydrogen bonding re-
gion. Ratio pairs from wavenumber ranges located near to each
other on the spectrum generally had a strong positive correla-
tion, for example those at 1030:1050 cm~! and 1050:1080 cm™~!.
An anti-correlation is noted the pair 3160:3170 cm~! and BRSI.
BRS3 and BRS4 also exhibit a strong correlation; both ratios being
a carbohydrate:lipid type at different wavenumber ranges. The
result of 0.00 for 1030:1050 cm™~! vs BRS1 is interesting, as this
suggests that the ratio of intensities of Amidel:Amidell and those
of the carbohydrate region vary completely independently of one
another. The adjacent carbohydrate ratios of 1030:1080 cm~!
and 1050:1080 cm~' also show a very low correlation with the
Amidel:Amidell ratio.

It was found that the 900-1800 cm™! range of the spectral data
produced the greatest accuracy for RF. The higher end of the spec-
trum from 2400-4000 cm~' performed adequately alone, but did
not add to the accuracy of the classification when used alongside
900-1800 cm~!. This suggests a correlation between the upper

This journal is © The Royal Society of Chemistry [year]



and lower ends of the spectrum, as evidenced also in the ratio
correlation graphic (Fig. 7). The lower end therefore represents
a better option, as the calculation is less expensive than using
the full range. In the work leading up to these results, the first
derivative spectra were found to be intermediate between raw
data and the second derivative in terms of statistical results and
clarity of important wavenumbers. The results of the generalised
2D correlational analysis proved to be useful as a comparison to
the RF results. It allowed for better visualisation of the differ-
ences in spectra and tallied well (as expected) with the impor-
tance charts. Our method works well for the binary classification
of cancer/non-cancer, the next step would be to develop further
the classification of disease states within the cancer subset.

4 Conclusions

Significant differences in IR spectra of differing disease states
were observed in this study, and we have proven that our ap-
proach has potential in the area of cancer diagnosis. We have em-
ployed and thoroughly tested the random forest technique and its
associated Gini feature importance, and proven it to be effective
in classifying cancer and non-cancer states. Noda’s generalised
2D IR approach has proven to be a useful adjunct in verifying
the importance results from RF. A robust pre-processing regimen
was also developed in the course of this work; it was found that
the normalised second derivative of the spectral data was most
effective in our RF classification. Investigation of various spectral
ratios was also carried out. While not immediately useful in RF
classification, some new relationships between ratios were found
which may prove interesting in further studies.

This research has shown a rapid, computationally light, ac-
curate, statistically robust methodology for the identification of
spectral features that define a dataset. The identification of these
features is in line with Occam’s razor and supports accurate di-
agnostics by focusing upon salient information as opposed to in-
cluding information from biological variance within the diagno-
sis. With current advances in IR technology, such as the devel-
opment of rapid discrete frequency collection, this approach is of
importance to enable future clinical translation and enables IR to
achieve its potential.
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6 E.S.

Fig. S1 Average spectra for cancer and non-cancer, together with their standard deviations
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Fig. S2 Receiver Operator Curve from the second derivative 900-1800 cm~! range
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Fig. S3 Convergence of sensitivity w.r.t. number of RF models
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Fig. S4 Gini Importance Chart - 2400-4000cm~! First Derivative with Synchronous 2D plot
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Fig. S5 Gini Importance Chart - 2400-4000cm~! First Derivative with Asynchronous 2D plot
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Fig. S6 Gini Importance Chart - 900-1800cm~! First Derivative with Synchronous 2D plot

900 1
1000 f 08
0.6
1100
H0.4
—~1200
]
s 1%% 5
5 1300 °
£ {0 8
=} el
S 1400 |- 2
§ 1-0.2 g
1500 |- =8 : 4 2
5 H-04
- - L4
1600
- e @ -0.6
L
1700 1 ' r -0.8
1 1 1 1 1 1 1 1 1 1 1 _1
0 20 40 1800 1700 1600 1500 1400 1300 1200 1100 1000 900
Mean Decrease (Gini) Wavenumber (cm '1)
Fig. S7 Gini Importance Chart - 900-1800cm~! First Derivative with Asynchronous 2D plot
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Fig. S8 Gini Importance Chart - 900-1800cm~' Normalised Spectra with Synchronous 2D plot
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Fig. S9 Gini Importance Chart - 900-1800cm~' Normalised Spectra with Asynchronous 2D plot
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Fig. S10 Gini Importance Chart - 2400-4000cm~! Normalised Spectra with Synchronous 2D plot
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Fig. S11 Gini Importance Chart - 2400-4000cm~! Normalised Spectra with Asynchronous 2D plot
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Fig. S12 Gini Importance Chart - 900-4000cm~! with average cancer (red) and non-cancer (blue) normalised spectra
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Fig. S13 Gini Importance Chart - 900-4000cm~! with average cancer (red) and non-cancer (blue) first derivative spectra
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Fig. S14 Gini Importance Chart - 900-4000cm~! with average cancer (red) and non-cancer (blue) second derivative spectra
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