Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Crystalfield symmetries of luminescent Eu3+ centers in GaN : the importance of the 5D0 to 7F1 transition

O'Donnell, K. P. and Edwards, P. R. and Yamaga, M. and Lorenz, K. and Kappers, M. J. and Boćkowski, M. (2016) Crystalfield symmetries of luminescent Eu3+ centers in GaN : the importance of the 5D0 to 7F1 transition. Applied Physics Letters, 108 (2). ISSN 0003-6951

Text (O'Donnell-et-al-APL2016-crystalfield-symmetries-of-luminescent-Eu3+-centers-in-GaN)
O_Donnell_et_al_APL2016_crystalfield_symmetries_of_luminescent_Eu3_centers_in_GaN.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview


Eu-doped GaN is a promising material with potential application not only in optoelectronics but also in magneto-optical and quantum optical devices ‘beyond the light emitting diode’. Its interesting spectroscopy is unfortunately complicated by spectral overlaps due to ‘site multiplicity’, the existence in a given sample of multiple composite centers in which Eu ions associate with intrinsic or extrinsic defects. We show here that elementary crystalfield analysis of the 5D0 to 7F1 transition can critically distinguish such sites. Hence, we find that the center involved in the hysteretic photochromic switching (HPS) observed in GaN(Mg):Eu, proposed as the basis of a new solid state qubit material, is not in fact Eu1, as previously reported, but a related defect, Eu1(Mg). Furthermore, the decomposition of the crystalfield distortions of Eu0, Eu1(Mg) and Eu1 into axial and non-axial components strongly suggests reasonable microscopic models for the defects themselves.