Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

On the use of probabilistic model-checking for the verification of prognostics applications

Aizpurua, Jose Ignacio and Catterson, Victoria M. (2015) On the use of probabilistic model-checking for the verification of prognostics applications. In: 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems, 2015-12-12 - 2015-12-14, Ain Shams University.

[img]
Preview
Text (Unanue-Catterson-ICICIS2015-Probabilistic-model-checking-for-the-verification-of-prognostics-applications)
Unanue_Catterson_ICICIS2015_Probabilistic_model_checking_for_the_verification_of_prognostics_applications.pdf - Accepted Author Manuscript

Download (626kB) | Preview

Abstract

Prognostics aims to improve asset availability through intelligent maintenance actions. Up-to-date remaining useful life predictions enable the optimization of maintenance planning. Verification of prognostics techniques aims to analyze if the prognostics application meets the design requirements. Online prognostics applications depend on the data-gathering hardware architecture to perform correct prognostics predictions. Accordingly, when verifying prognostics requirements compliance, it is necessary to include the effect of hardware failures on prognostics predictions. In this paper we investigate the use of formal verification techniques for the integrated verification of prognostics applications including hardware and software components. Focusing on the probabilistic model-checking approach, a case study from the power industry shows the validity of the proposed framework.