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We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject
drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which
analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the
fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique
of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1)
provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence.
Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter
values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV
amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs
can cause the disease to die out in scenarios where deterministic models predict disease persistence.

1. Introduction

HIV (human immunodeficiency virus) is a deadly and
infectious Lentivirus which attacks and weakens the immune
system by especially attacking the CD4 cells. As a result,
HIV causes AIDS (acquired immune seficiency syndrome).
Since the first discovery of HIV in 1981, it has already
infected almost 78 million people with about 39 million lives
having been taken [1]. Despite the massive improvement in
technology and medical equipment, we are still unable to
fully find a cure for the HIV virus. In 2014, according to
the reports by the World Health Organization, there were
still approximately 36.9 million people living with HIV, with
around 2 million new cases globally [2]. In order to control
the epidemic, it is crucial to understand the dynamical
behaviour of HIV and how it spreads within our community.
There are various routes by which HIV can be transmitted,
for example, transmission via unprotected sexual intercourse,
vertically from infected mothers to their unborn children
and people who inject drugs (PWIDs) sharing contaminated
needles. Amongst all the possible routes ofHIV transmission,
PWIDs have become a significant risk group with around 3

million of them living with HIV [3]. For every 10 new cases of
HIV infection, on average, one of them is caused by injecting
drug use. In regions of Central Asia and Eastern Europe,
injecting drug use accounts for 80 percent of HIV infections
[3]. As a result, in this paper, we will focus on looking at this
particular risk group.

Over the past years, mathematical models have been used
successfully to analyse and predict the dynamical behaviour
in biological systems. The first mathematical model for the
spread of HIV and AIDS amongst PWIDs in shooting
gallerieswas created byKaplan [4], where a shooting gallery is
a place for PWIDs to purchase and inject drugs. Kaplan incor-
porated many factors into his model such as the injection
equipment sharing rate and the effect of cleaning injection
equipment in order to better understand how HIV is trans-
mitted within this type of community. Based on the original
model created in [4], Greenhalgh and Hay [5] modified the
model by changing some of the assumptions made by Kaplan
to make them more realistic. These assumptions include
having different visiting rates to the shooting galleries for
PWIDs who have been diagnosed positive for the HIV virus
and thus may have been advised to stop sharing injections
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and for those who either are not HIV positive or are but do
not know it. The modified Kaplan model in [5] also allows
for the possibility that an infected PWID may not always
leave a needle infected before cleaning, as well as introducing
different transmission probabilities for flushed and unflushed
needles. The term “flushing” refers to the process where
an infectious piece of injecting equipment is used by an
uninfected PWID and thus after injecting the syringe is left
uninfected. The HIV model that we will be looking at in this
paper is based on the modified Kaplan model given in [5].
There have been many papers that have already looked at the
connection between the spread of HIV and PWIDs [6–11].
However the models used are all deterministic models.

The real world is not deterministic, and there are many
factors that can influence the behaviour of a disease and thus
it is not always possible to predict with certainty what would
happen. Consequently, a stochastic model would be more
appropriate. Furthermore, a stochastic model also possesses
many useful unique properties such as being able to calculate
the probability that an endemic will not occur and the
expected duration of an endemic. By running a stochastic
model many times, we can also build up a distribution
of the possible outcomes which allows us to identify the
number of infectives at a particular time 𝑡, whereas for a
deterministic model we will only get a single outcome. HIV
infection is a behavioural disease and thus there are many
environmental factors that can influence the spread of HIV.
Rhodes et al. [12] havementioned in detail how factors such as
injecting environments, social network, and neighbourhood
deprivation and poverty can affect the spread ofHIV amongst
PWIDs. There are also other papers which emphasised how
the dynamical behaviour of HIV is highly correlated with
other factors [13–15]. Consequently, it is crucial for us to
understand how HIV would spread under those environ-
mental influences, especially amongst PWIDs. In this case,
a stochastic model would be useful. There is also natural
biological variation within people in their response to HIV.
Using a stochastic model with environmental perturbation in
the disease transmission parameter as we will do is one way
to include this.

The stochastic aspects of the HIV model have been
studied by many authors. For example, in [16], Dalal et al.
considered a stochastic model for internal HIV dynamics.
They incorporated environmental stochasticity into their
model by using the standard technique of parameter per-
turbation. They proved that the solution (representing the
concentrations of uninfected cells, infected cells, and virus
particles) is nonnegative and have looked at the stability
aspect of their model by establishing the conditions required
in order for the numbers of infected cells and virus particles to
tend asymptotically to zero exponentially almost surely. Ding
et al. [13] looked at a stochastic model for AIDS transmission
and control taking into consideration the treatment rate
of HIV patients. They have also examined the effect that
knowledge, attitude, and behaviour of patients have on the
spread of AIDS. Tuckwell and Le Corfec [17] used a stochastic
model to analyse the behaviour of HIV-1 but focus only on
the early stage after infection. Dalal et al. [18] have also used a
stochasticmodel to look at another aspect ofHIV.Once again,

by using parameter perturbation, they introduced environ-
mental randomness into their HIVmodel which allows them
to examine the effect that condom use has on the spread of
AIDS among a homogeneous homosexual population which
is split into distinct risk groups according to the tendency of
individuals to use condoms. Peterson et al. [19] constructed
a population-based simulation of a community of PWIDs
using theMonte Carlo technique. Greenhalgh and Lewis [20]
modelled the spread of disease using a set of behavioural
assumptions due to Kaplan and O’Keefe [10]. They use a
branching process approximation to show that if the basic
reproduction number𝑅

0
is less than or equal to unity then the

disease will always go extinct. They calculate an expression
for the probability of extinction. They discuss an extended
model which incorporates a three-stage incubation period
and again examine a branching process approximation.They
then compare them to investigate whether the deterministic
model provides a good approximation to the simulated
stochastic model. Although there have been many papers
that looked at the stochastic aspect of the spread of HIV,
as far as we know there are not many studies that focus on
the stochastic aspect of the spread of HIV amongst PWIDs
despite this particular risk group being responsible for many
new HIV cases around the world. Thus it is crucial for us
to examine the effect of environmental noise on this type of
community.

Inspired by the model constructed in [5], in this paper
we will introduce environmental stochasticity into the model
by parameter perturbation which is a standard technique in
stochastic population modelling [16, 18, 21, 22]. To the best
of our knowledge, this is the first paper which examines the
effect that environmental stochasticity has on the dynamical
behaviour of the modified Kaplan model [5]. The techniques
used in this paper are inspired by the work done in [21].
The paper is organised as follows. In the next section, we
will describe the formulation of the stochastic HIV model
amongst PWIDs. In Section 3, we shall prove the existence
of a unique nonnegative solution. In Sections 4 and 5, we
will investigate two of the main important properties of
any biological system, namely, the conditions required for
extinction and persistence, respectively.Then in Section 6, we
shall show that there exists a stationary distribution for our
system. Finally, we will perform some numerical simulations
with realistic parameter values to verify the results.

2. The Stochastic HIV Model

Throughout this paper, we let (Ω, F, {F
𝑡
}
𝑡≥0

, P) be a
complete probability space with filtration {F

𝑡
}
𝑡≥0

satisfying
the usual conditions (i.e., it is increasing and right continuous
whileF

0
contains allP-null sets). Let us consider the follow-

ing deterministic HIVmodel, which has been constructed by
Greenhalgh and Hay [5] based on the model of Kaplan [4].
Define the following parameters:

𝜆
1
: shooting gallery visiting rate for susceptible

PWIDs and the PWIDs who are infected but do not
know they are infected.
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𝜆
2
: shooting gallery visiting rate for infected PWIDs

who know that they are infected.
𝑃
1
: probability that the needle is flushed and the

PWID is infected.
𝑃
2
: probability that the needle is flushed and the

PWID remains uninfected.
𝑃
3
: probability that the PWID becomes infected

without the needle being flushed.
𝑃
4
: probability that the PWID remains uninfected and

the needle is not flushed.
𝜙
1
: probability that an infected PWID leaves unin-

fected a syringe that was initially uninfected.
𝜃
1
: probability that an infected PWID leaves unin-

fected a syringe that was initially infected.
𝜉: fraction of all PWIDs (susceptible or not) who
bleach their injection equipment after use.
𝛾: gallery ratio, where 𝛾 = 𝑛/𝑚 and 𝑛 represents the
PWID population and 𝑚 represents the number of
shooting galleries or syringes that each PWID visits
at random.
𝑝: probability that infected PWIDs know that they are
infected.
𝜇: per capita rate at which infected PWIDs cease to
share injection equipment (including those who cease
sharing because of developing AIDS).

Note that 𝑃
1
+ 𝑃
2
+ 𝑃
3
+ 𝑃
4
= 1.

Define the following new composite parameters:

𝜎 = [𝜆
1
(1 − 𝑝) + 𝜆

2
𝑝] 𝛾 (1 − 𝜉) (1 − 𝜙

1
) ,

𝜂 = [𝜆
1
(1 − 𝑝) + 𝜆

2
𝑝] 𝛾 [𝜉 + 𝜃

1 (1 − 𝜉)] ,

𝜌 = 𝜆
1
𝛾 [1 − (1 − 𝜉) (1 − 𝑃

1
− 𝑃
2
)] ,

𝜐 = 𝜆
1
(𝑃
1
+ 𝑃
3
) .

(1)

In the expression for 𝜎 the factor (1−𝜉)(1−𝜙
1
) represents the

probability that an initially uninfected syringe is left infected
and not cleaned by an infected PWID. The term 𝜆

1
(1 − 𝑝) +

𝜆
2
𝑝 represents the average rate at which an infected PWID

visits syringes. Hence 𝜎 = 𝛾𝜎, where 𝛾 = 𝑛/𝑚 is the gallery
ratio and 𝜎 is the rate at which an infected PWID visits
syringes multiplied by the probability that he or she leaves
an uninfected syringe infected after use. Similarly 𝜂 = 𝛾𝜂,
where 𝜂 is the rate at which an infected PWID visits syringes
multiplied by the probability that he or she leaves an infected
syringe uninfected after use.

𝜆
1
represents the rate at which a susceptible PWID visits

syringes and 1− (1− 𝜉)(1−𝑃
1
−𝑃
2
) represents the probability

that an initially infected syringe is left uninfected after use
by that PWID. Hence 𝜌 = 𝛾𝜌, where 𝜌 is the rate at which a
susceptible PWIDvisits syringesmultiplied by the probability
that he or she leaves an infected syringe uninfected after
use. 𝜐 represents the rate at which a susceptible PWID visits
syringes multiplied by the probability that he or she becomes
infected given that the syringe which they visit is infected.

Thus 𝜐𝛽 represents the rate at which a susceptible PWID visits
syringes and becomes infected. 𝜐 can thus be regarded as the
“potential” infection rate of a susceptible PWID.

Let 𝜋(𝑡) and 𝛽(𝑡) denote the proportion of infected
PWIDs and proportion of infected needles, respectively.Thus
the absolute numbers of infected PWIDs and infected needles
are 𝑛𝜋(𝑡) and 𝑚𝛽(𝑡). The spread of the disease amongst
syringes can be described by the following differential equa-
tion:

𝑑 (𝑚𝛽 (𝑡))

𝑑𝑡
= 𝑛𝜋 (𝑡) 𝜎 (1 − 𝛽 (𝑡)) − 𝑛𝜋 (𝑡) 𝜂𝛽 (𝑡)

− 𝑛 (1 − 𝜋 (𝑡)) 𝜌𝛽 (𝑡) .

(2)

Dividing by𝑚,

𝑑𝛽 (𝑡)

𝑑𝑡
= 𝜋 (𝑡) 𝜎 (1 − 𝛽 (𝑡)) − 𝜋 (𝑡) 𝜂𝛽 (𝑡)

− (1 − 𝜋 (𝑡)) 𝜌𝛽 (𝑡)

= 𝜋 (𝑡) (𝜎 − 𝜏𝛽 (𝑡)) − (1 − 𝜋 (𝑡)) 𝜌𝛽 (𝑡) ,

(3)

where

𝜏 = 𝜎 + 𝜂 = 𝛾 (𝜎 + 𝜂) , (4)

is the gallery ratio multiplied by the rate at which an infected
PWID visits syringes multiplied by the sum of the probability
that he or she leaves an uninfected syringe infected after use
plus the probability that he or she leaves an infected syringe
uninfected after use.

The spread of the disease amongst PWIDs can be
described by the differential equation:

𝑑 (𝑛𝜋 (𝑡))

𝑑𝑡
= 𝑛 (1 − 𝜋 (𝑡)) 𝜐𝛽 (𝑡) − 𝜇 (𝑛𝜋 (𝑡)) . (5)

Dividing by 𝑛,

𝑑𝜋 (𝑡)

𝑑𝑡
= (1 − 𝜋 (𝑡)) 𝜐𝛽 (𝑡) − 𝜇𝜋 (𝑡) . (6)

So in summary the equations describing the deterministic
HIV model are

𝑑𝛽 (𝑡)

𝑑𝑡
= 𝜋 (𝑡) (𝜎 − 𝜏𝛽 (𝑡)) − (1 − 𝜋 (𝑡)) 𝜌𝛽 (𝑡) ,

𝑑𝜋 (𝑡)

𝑑𝑡
= (1 − 𝜋 (𝑡)) 𝜐𝛽 (𝑡) − 𝜇𝜋 (𝑡) .

(7)

Greenhalgh and Hay define the basic reproduction num-
ber for the modified Kaplan model to be

𝑅
𝐷

0
=
𝜐𝜎

𝜌𝜇
, (8)

where in Section 4.5 of their paper [5] they have shown in
detail that it corresponds to the usual biological definition,
that is, the expected number of secondary infected PWIDs
(infected PWIDswho became infected from sharing a syringe
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with the original infected PWID) caused during his or her
entire infectious period by a single newly infected PWID
entering a disease-free population at equilibrium. They also
point out that it is also the expected number of secondary
infected needles caused by a single newly infected needle
entering the disease-free population at equilibrium.

Greenhalgh and Hay then show that the disease dies out
if 𝑅𝐷
0
< 1 or 𝑅𝐷

0
= 1 and 𝜏 > 𝜌. If 𝑅𝐷

0
> 1 there are two

possible equilibria, one with no disease present and the other
with disease present. Thus this value of 𝑅𝐷

0
clearly satisfies

the usual properties of the deterministic threshold value in
epidemic models. There is a unique endemic equilibrium

𝛽
∗
=
𝜎

𝜏
(1 −

𝜌𝜇

𝜎𝜐
) ,

𝜋
∗
=

𝜎𝜐 − 𝜌𝜇

𝜇𝜏 + 𝜎𝜐 − 𝜌𝜇
.

(9)

If 𝑅𝐷
0
> 1 then the unique endemic equilibrium is locally

stable. If 𝜏 > 𝜌 and 𝑅𝐷
0
> 1, then 𝛽(𝑡) → 𝛽

∗ and 𝜋(𝑡) → 𝜋
∗

as 𝑡 → ∞ provided that 𝜋(0) > 0 or 𝛽(0) > 0.
Note that the average rate at which PWIDs leave the

sharing, injecting population is around 0.25/year [5] so, on
average, they each share for four years.𝑃

1
+𝑃
3
, the probability

of HIV transmission to a susceptible PWID on making a
single injection with an infected syringe, is quite small (e.g.,
one estimate is 0.01 [5]). On the other hand, PWIDs are
injected every few days which is a much shorter timescale
than the demographic epidemiological changes which take
several years. Hence changes in the fraction of syringes
infected will typically happen a lot faster than changes in the
fraction of PWIDs infected.

Thus over an intermediate timescale it may be reasonable
to assume that 𝜋(𝑡) is approximately constant in the last
equation of (7). Hence 𝛽(𝑡) will approach its equilibrium
value from this equation

𝜋 (𝑡) 𝜎

𝜋 (𝑡) + 𝜌 − 𝜌𝜋 (𝑡)
. (10)

By substituting (10) into the second equation in (7) we deduce
that

𝑑𝜋 (𝑡)

𝑑𝑡
=
(1 − 𝜋 (𝑡)) 𝜋 (𝑡) 𝜐𝜎

𝜋 (𝑡) 𝜏 + 𝜌 − 𝜋 (𝑡) 𝜌
− 𝜇𝜋 (𝑡) . (11)

A similar technique of reducing the dimensions of the model
by assuming that the needle equations are at equilibrium
is used in models of variable infectivity of spread of HIV
amongst PWIDs discussed by Greenhalgh and Lewis [8, 11]
and Corson et al. [23, 24].

In this paper, we introduce environmental stochastic-
ity into system (11) by replacing the parameter 𝜐 by 𝜐 +
𝜐(𝑑𝐵(𝑡)/𝑑𝑡), where𝐵(𝑡) is a Brownianmotion and 𝜐 > 0 is the
intensity of the noise which is associated with the potential
rate of infection 𝜐. It is therefore clear that the total number of
new PWIDs infected during the small time interval [𝑡, 𝑡 + 𝑑𝑡)
is normally distributed with mean,

𝑛 (1 − 𝜋 (𝑡)) 𝜋 (𝑡) 𝜐𝜎

𝜋 (𝑡) 𝜏 + 𝜌 − 𝜋 (𝑡) 𝜌
𝑑𝑡, (12)

and variance,

𝑛
2
(1 − 𝜋 (𝑡))

2
𝜋 (𝑡)
2
𝜐
2
𝜎
2

(𝜋 (𝑡) 𝜏 + 𝜌 − 𝜋 (𝑡) 𝜌)
2
𝑑𝑡. (13)

Notice that both of this mean and variance tend to zero
as 𝑑𝑡 goes to zero which is a biologically desirable property.
This is a standard technique of introducing random noise in
stochastic modelling [16, 18, 25–28] and corresponds to some
stochastic environmental factor acting on each individual in
the population.

To justify why simple white noise is appropriate for our
model suppose that we consider a timescale on which 𝛽(𝑡)
and𝜋(𝑡) are approximately constant.We consider the changes
in a small time interval [𝑡, 𝑡 + 𝑇

0
) and divide it into a series of

𝑛
0
equal width subintervals [𝑡, 𝑡 + 𝑇), [𝑡 + 𝑇, 𝑡 + 2𝑇), . . . , [𝑡 +

(𝑛
0
− 1)𝑇, 𝑡 + 𝑛

0
𝑇), where 𝑛

0
𝑇 = 𝑇

0
and 𝑛

0
is very large.

Then the numbers of new infections caused by a single
susceptible PWID visiting one infected syringe during each
of the subintervals [𝑡, 𝑡 + 𝑇), [𝑡 + 𝑇, 𝑡 + 2𝑇), . . . , [𝑡 + (𝑛

0
−

1)𝑇, 𝑡 + 𝑛
0
𝑇) are identically distributed random variables,

say, with common mean 𝜇
0
and common variance 𝜎2

0
. We

assume that 𝜎2
0
< ∞. So by the Central Limit Theorem

the total number of PWIDs who visit infected syringes and
become infected in [𝑡, 𝑡 + 𝑛

0
𝑇) = [𝑡, 𝑡 + 𝑇

0
) is approximately

normally distributed with mean 𝑛
0
𝜇
0
and variance 𝑛

0
𝜎
2

0
.

Moreover keeping 𝑇 fixed and doubling 𝑇
0
doubles 𝑛

0
thus

the mean and variance of the number of susceptible PWIDs
who become infected from visiting an infected syringe in
[𝑡, 𝑡 + 𝑇

0
) are both proportional to 𝑇

0
. Hence it is appropriate

to consider simple white noise where the mean number of
infections in [𝑡, 𝑡 + 𝑑𝑡) caused by a given susceptible PWID
visiting a given infected syringe is 𝜐𝑑𝑡 (hence proportional to
𝑑𝑡) the same as in the deterministic model and the variance
of this number is also proportional to 𝑑𝑡.

As a result, we obtain the following SDE HIV model:

𝑑𝜋 (𝑡) = [
(1 − 𝜋 (𝑡)) 𝜋 (𝑡) 𝜐𝜎

𝜋 (𝑡) 𝜏 + 𝜌 − 𝜋 (𝑡) 𝜌
− 𝜇𝜋 (𝑡)] 𝑑𝑡

+ [
(1 − 𝜋 (𝑡)) 𝜋 (𝑡) 𝜐𝜎

𝜋 (𝑡) 𝜏 + 𝜌 − 𝜋 (𝑡) 𝜌
] 𝑑𝐵 (𝑡) .

(14)

The reason why we chose to perturb the parameter 𝜐
corresponding to the total rate at which PWIDs visit syringes
and potentially become infected is because as it multiplies the
term𝜋(1−𝜋) in (11) it is a key parameter in the transmission of
HIV amongst PWIDs and we thought that this would be the
most interesting and important parameter when analysing
the effect that environmental noise would have on the spread
of HIV.

There are some environmental factors which can cause a
perturbation in 𝜐, for example, natural biological variation
between people and between HIV viruses. These factors
affect the probability 𝑃

1
+ 𝑃
3
of HIV transmission to a

susceptible PWID. It is possible that environmental noise
causes variation in other parameters too, but it would be quite
complicated to include these as well. Analysis of the model
with environmental stochasticity in 𝜐 provides theoretical
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insight into the behaviour of themodel. A similar approach of
introducing environmental stochasticity into only the disease
transmission parameter was discussed in stochastic studies of
epidemic models by Ding et al. [13], Gray et al. [21], Lu [25],
Tornatore et al. [29], and others.

For the rest of the paper, we shall focus on analysing the
SDE HIV model (14). Throughout this paper, unless stated
otherwise, we shall assume that the unit of time is one day.

3. Existence of Unique Nonnegative Solution

Before we begin to investigate the dynamical behaviour of the
SDE HIV model (14), it is important for us to show whether
this SDE has a unique global nonnegative solution. It is well-
known that, in order for an SDE to have a unique global
solution for any given initial value, the coefficients of the
equation are generally required to satisfy the linear growth
condition and the local Lipschitz conditions [30]. It is clear
that our coefficients in (14) satisfy the linear growth condition
and they are locally Lipschitz continuous. As a result there is a
unique, nonexplosive solution to (14).The following theorem
shows that the solution remains in (0, 1) if it starts there.

Theorem 1. For any given initial value 𝜋(0) = 𝜋
0
∈ (0, 1), the

SDE HIV model (14) has a unique global nonnegative solution
𝜋(𝑡) ∈ (0, 1) for all 𝑡 ≥ 0 with probability one; namely,

P {𝜋 (𝑡) ∈ (0, 1) , ∀𝑡 ≥ 0} = 1. (15)

Proof. For any given initial value 𝜋
0
∈ (0, 1), there is a unique

global solution 𝜋(𝑡) for 𝑡 ≥ 0. Let 𝑘
0
≥ 0 be sufficiently large

so that 𝜋
0
lies within the interval (1/𝑘

0
, 1 − (1/𝑘

0
)). Then for

each integer 𝑘 ≥ 𝑘
0
, define the stopping time

𝜏
𝑘
= inf {𝑡 ≥ 0 : 𝜋 (𝑡) ∉ (1

𝑘
, 1 − (

1

𝑘
))} , (16)

where inf 0 = ∞. It is easy to see that 𝜏
𝑘
is increasing as 𝑘 →

∞. Let us also define 𝜏
∞
= lim
𝑘→∞

𝜏
𝑘
. To complete the proof,

we need to show that 𝜏
∞
= ∞ a.s.Wewill carry this proof out

by contradiction. Let us therefore assume that the statement
is false and thus there exists a pair of constants 𝑇 > 0 and
𝜀 ∈ (0, 1) such that

P {𝜏
∞
≤ 𝑇} > 𝜀. (17)

Hence, there is an integer 𝑘
1
≥ 𝑘
0
such that

P {𝜏
𝑘
≤ 𝑇} > 𝜀 ∀𝑘 ≥ 𝑘

1
. (18)

Let us define a function 𝑉 : (0, 1) → R,

𝑉 (𝑥) =
1

𝑥
+

1

1 − 𝑥
. (19)

Now by Itô’s formula, we have that, for any 𝑡 ∈ [0, 𝑇] and
𝑘 ≥ 𝑘
1
,

E𝑉 (𝜋 (𝑡 ∧ 𝜏
𝑘
)) = 𝑉 (𝜋

0
) + E∫

𝑡∧𝜏𝑘

0

𝐿𝑉 (𝜋 (𝑠)) 𝑑𝑠, (20)

where 𝐿𝑉 : (0, 1) → R is defined by

𝐿𝑉 (𝑥) =
− (1 − 𝑥) 𝜐𝜎

𝑥 (𝑥𝜏 + 𝜌 − 𝑥𝜌)
+

𝑥𝜐𝜎

(𝑥𝜏 + 𝜌 − 𝑥𝜌) (1 − 𝑥)

+
𝜇

𝑥
−

𝜇𝑥

(1 − 𝑥)
2
+

(1 − 𝑥)
2
𝜐
2
𝜎
2

(𝑥𝜏 + 𝜌 − 𝑥𝜌)
2
𝑥

+
𝑥
2
𝜐
2
𝜎
2

(1 − 𝑥) (𝑥𝜏 + 𝜌 − 𝑥𝜌)
2
.

(21)

Furthermore, it is easy to see that

𝐿𝑉 (𝑥) ≤
𝜐𝜎

min (𝜏, 𝜌) (1 − 𝑥)
+
𝜇

𝑥

+
𝜐
2
𝜎
2

min (𝜏, 𝜌)2
[
1

𝑥
+

1

1 − 𝑥
] ≤ 𝐶𝑉 (𝑥) ,

(22)

where

𝐶 = {[
𝜐𝜎

min (𝜏, 𝜌)
] ∨ 𝜇} +

𝜐
2
𝜎
2

min (𝜏, 𝜌)2
. (23)

Here 𝑎 ∨ 𝑏 denotes the maximum of 𝑎 and 𝑏. By substituting
this into (20), we have that for any 𝑡 ∈ [0, 𝑇]

E𝑉 (𝜋 (𝑡 ∧ 𝜏
𝑘
)) ≤ 𝑉 (𝜋

0
) + 𝐶∫

𝑡

0

E𝑉 (𝜋 (𝑠 ∧ 𝜏
𝑘
)) 𝑑𝑠. (24)

Then by using the Gronwall inequality we have that

E𝑉 (𝜋 (𝑡 ∧ 𝜏
𝑘
)) ≤ 𝑉 (𝜋

0
) 𝑒
𝐶𝑡
≤ 𝑉 (𝜋

0
) 𝑒
𝐶𝑇
. (25)

Let us set Ω
𝑘
= {𝜏
𝑘
≤ 𝑇} for 𝑘 ≥ 𝑘

1
, and so, by (18), we have

that P(Ω
𝑘
) ≥ 𝜀. For every 𝜔 ∈ Ω

𝑘
, 𝜋(𝜏
𝑘
, 𝜔) equals either 1/𝑘

or 1 − (1/𝑘) and thus 𝑉(𝜋(𝜏
𝑘
, 𝜔)) ≥ 𝑘. Consequently we have

that

𝑉 (𝜋
0
) 𝜀
𝐶𝑇
≥ E [1

Ω𝑘
(𝜔)𝑉 (𝜋 (𝜏𝑘, 𝜔))] ≥ 𝑘P (Ω𝑘)

≥ 𝜀𝑘.

(26)

Letting 𝑘 → ∞, we have a contradiction, where ∞ >

𝑉(𝜋
0
)𝜀
𝐶𝑇

= ∞. Therefore, our assumption at the beginning
must be false and thus we obtained our desired result that
𝜏
∞
= ∞ a.s.

In this section we have managed to show that there exists
a unique nonnegative global solution for the SDEHIVmodel
(14) which remains in (0, 1).

4. Extinction

When studying the dynamical behaviour of a population
system, it is important for us to consider the conditions
required in order for the HIV amongst PWIDs to die out, in
other words when the disease will become extinct. We will
split this proof into two parts, each considering two different
scenarios of the noise intensity, namely, 𝜐. Before we begin
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the proof, let us recall the basic reproduction number for the
deterministic model of Greenhalgh and Hay [5]:

𝑅
𝐷

0
=
𝜐𝜎

𝜌𝜇
, (27)

where all the parameters are defined as before.
For the stochastic model we define the stochastic basic

reproduction number

𝑅
𝑆

0
= 𝑅
𝐷

0
−
𝜐
2
𝜎
2

2𝜌
2
𝜇
. (28)

This is the deterministic basic reproduction number 𝑅𝐷
0

corrected for the effect of stochastic noise and plays a role
in the stochastic model with many similarities to 𝑅𝐷

0
in the

deterministic one.

Theorem 2. If the stochastic reproduction number

𝑅
𝑆

0
= 𝑅
𝐷

0
−
𝜐
2
𝜎
2

2𝜌
2
𝜇
< 1, 𝜐

2
≤
𝜐𝜌

𝜎
, (29)

then, for any given initial value 𝜋(0) = 𝜋
0
∈ (0, 1), the solution

of (14) obeys

lim
𝑡→∞

sup 1
𝑡
log𝜋 (𝑡) ≤ 𝜐𝜎

𝜌
−
𝜐
2
𝜎
2

2𝜌
2
− 𝜇 = 𝜇 (𝑅

𝑆

0
− 1)

< 0 𝑎.𝑠.

(30)

In other words, 𝜋(𝑡) will tend to zero exponentially a.s. Thus
the fraction of population that is infected with HIV at time 𝑡
will approach zero.

Proof. Let us define a function 𝑉(𝑥) = log(𝑥), where by Itô’s
formula we have that

log (𝜋 (𝑡)) = log (𝜋
0
) + ∫

𝑡

0

𝑓 (𝜋 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) .

(31)

Here 𝑓 : (0, 1) → R is defined as

𝑓 (𝑥) =
(1 − 𝑥) 𝜐𝜎

𝑥𝜏 + 𝜌 − 𝑥𝜌
− 𝜇 −

(1 − 𝑥)
2
𝜐
2
𝜎
2

2 (𝑥𝜏 + 𝜌 − 𝑥𝜌)
2

(32)

=
𝜐𝜎

𝜑 + 𝜌
− 𝜇 −

𝜐
2
𝜎
2

2 (𝜑 + 𝜌)
2
, (33)

where 𝜑 = 𝑥𝜏/(1 − 𝑥).Moreover

𝑓

(𝜑) = −

𝜐𝜎

(𝜑 + 𝜌)
2
+

𝜐
2
𝜎
2

(𝜑 + 𝜌)
3

< −
𝜐𝜎

(𝜑 + 𝜌)
2
+

𝜐𝜌𝜎

(𝜑 + 𝜌)
3
< 0.

(34)

Hence𝑓(𝜑) is amonotone decreasing function of 𝜑 for 𝜑 > 0,
and thus we must have that

𝑓 (𝑥) ≤ 𝑓 (𝑥)
𝜑=0

= 𝜇 (𝑅
𝑆

0
− 1) < 0, (35)

where 𝑅𝑆
0
is the stochastic reproduction number defined in

Theorem 2. As a result, (31) becomes

log (𝜋 (𝑡)) ≤ log (𝜋
0
) + 𝑡𝜇 (𝑅

𝑆

0
− 1)

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) .

(36)

This implies that

lim
𝑡→∞

sup 1
𝑡
log (𝜋 (𝑡))

≤ 𝜇 (𝑅
𝑆

0
− 1)

+ lim
𝑡→∞

sup1
𝑡
∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) .

(37)

However, since

0 ≤
(1 − 𝜋 (𝑠))

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
≤

1

min (𝜏, 𝜌)
, (38)

then, by the large number theorem of martingales (e.g., [28]),
we have that

lim
𝑡→∞

sup1
𝑡
∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) = 0 a.s. (39)

Hence, we have arrived at our desired result, where

lim
𝑡→∞

sup1
𝑡
log (𝜋 (𝑡)) ≤ 𝜇 (𝑅𝑆

0
− 1) < 0 a.s. (40)

In other words, 𝜋(𝑡) tends to zero exponentially a.s.

In Theorem 2, we have focused on discussing the extinc-
tion conditions for our SDE HIV model (14); we have
considered a partial case, where the noise intensity satisfies
the condition 𝜐2 ≤ 𝜐𝜌/𝜎. In order to get a better picture
of the dynamical behaviour of our SDE HIV model (14),
it is important for us to investigate what happens to the
population system when 𝜐2 > 𝜐𝜌/𝜎.

Theorem 3. If

𝑅
𝑆

0
= 𝑅
𝐷

0
−
𝜐
2
𝜎
2

2𝜌
2
𝜇
< 1, 𝜐

2
>
𝜐𝜌

𝜎
∨
𝜐
2

2𝜇
, (41)

then, for any given initial value 𝜋(0) = 𝜋
0
∈ (0, 1), the solution

of (14) obeys

lim
𝑡→∞

sup 1
𝑡
log𝜋 (𝑡) ≤ 𝜐

2

2𝜐
2
− 𝜇 < 0 𝑎.𝑠. (42)

In other words,𝜋(𝑡)will tend to zero exponentially a.s.Thus the
fraction of the population that are infected with HIV at time 𝑡
will become zero.
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Proof. In order to simplify the computation, throughout this
proof, we will be working with (33). It is easy to see that this
function has a maximum turning point at

𝜑 = �̂� =
𝜐
2
𝜎

𝜐
− 𝜌. (43)

Note that, by substituting (43) back into the expression
𝜑 = 𝑥𝜏/(1 − 𝑥), we could easily obtain the same result as we
would if we decided to work with the alternative function

𝑥 = �̂� =
𝜐
2
𝜎 − 𝜌𝜐

𝜐 (𝜏 − 𝜌) + 𝜐
2
𝜎

, (44)

where �̂� ∈ (0, 1). Note also that �̂� > 0 by (41). Furthermore, by
substituting the maximum turning point �̂� given in (43) into
(33), we have that 𝑓(𝑥)|

𝜑=�̂�
= 𝜐
2
/2𝜐
2
− 𝜇 which is negative by

condition (41).Therefore, arguing as before inTheorem 2, we
have that

log (𝜋 (𝑡)) ≤ log (𝜋
0
) + 𝑡 (

𝜐
2

2𝜐
2
− 𝜇)

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) ,

(45)

which similarly implies that

lim
𝑡→∞

sup 1
𝑡
log (𝜋 (𝑡)) ≤ 𝜐

2

2𝜐
2
− 𝜇 < 0 a.s. (46)

In other words, 𝜋(𝑡) will also tend to zero exponentially
a.s. for 𝜐2 > 𝜐𝜌/𝜎 ∨ 𝜐

2
/2𝜇 and thus we have completed the

proof.

Note that 𝑅𝑆
0
< 𝑅
𝐷

0
, which implies that the condition

for extinction is weaker in the stochastic case compared
to the deterministic case. In addition, as 𝜐 increases, the
stochastic reproduction number 𝑅𝑆

0
will become smaller and

thus it will be more likely for the HIV virus to die out
for large noise intensity. As a result, this highlights the fact
that environmental factors play an important role in the
dynamical behaviour of HIV amongst PWIDs.

There is a gap in our results for𝑅𝑆
0
< 1.We have not shown

what will happen if 𝑅𝑆
0
< 1 and

𝜐𝜌

𝜎
< 𝜐
2
<
𝜐
2

2𝜇
, (47)

but we conjecture that in this case the disease will die out a.s.
This was confirmed by simulation.

5. Persistence

Another very important aspect of the behaviour of a dynami-
cal system is the conditions for persistence. In this section we
will discuss the persistence conditions required for our SDE
HIV model (14).

Theorem 4. If

𝑅
𝑆

0
= 𝑅
𝐷

0
−
𝜐
2
𝜎
2

2𝜌
2
𝜇
> 1, (48)

then, for any given initial value 𝜋(0) = 𝜋
0
∈ (0, 1), the solution

of (14) satisfies

lim
𝑡→∞

sup𝜋 (𝑡) ≥ 𝜂 𝑎.𝑠, (49)

lim
𝑡→∞

inf 𝜋 (𝑡) ≤ 𝜂 𝑎.𝑠, (50)

where

𝜂 =

𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2

2𝜇𝜏 + 𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2

> 0, (51)

which is the unique root in (0, 1) of the function

𝑓 (𝑥) =
(1 − 𝑥) 𝜐𝜎

𝑥𝜏 + 𝜌 − 𝑥𝜌
− 𝜇 −

(1 − 𝑥)
2
𝜐
2
𝜎
2

2 (𝑥𝜏 + 𝜌 − 𝑥𝜌)
2
= 0, (52)

defined in (32). In other words, the solution𝜋(𝑡)will persist and
oscillate around the level 𝜂 infinitely often with probability one.

Proof. Let us recall the function 𝑓 : (0, 1) → R defined
in (33). Throughout this proof, we will be working with this
function in order to simplify the computation.

By setting 𝑓(𝑥) = 0, we obtain one positive and one
negative root, where the positive root is

𝜑
∗
=
1

2𝜇
[√(𝜐𝜎 − 2𝜇𝜌)

2
+ 4𝜇 (𝜐𝜎𝜌 − 𝜇𝜌

2
− 0.5𝜐

2
𝜎
2
)

+ (𝜐𝜎 − 2𝜇𝜌)] > �̂�,

(53)

where �̂� is themaximum turning point of (33) defined in (43).
For the purpose of consistency, we will now substitute (53)
into the expression 𝜑∗ = 𝑥∗𝜏/(1 − 𝑥∗) to get that

𝑥
∗
= 𝜂 =

𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2

2𝜇𝜏 + 𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2

> �̂�, (54)

where 𝑥∗ ∈ (0, 1), and that �̂� is the equivalent maximum
turning point of (32) defined in (44). Moreover, it is easy to
see that

𝑓 (0) =
𝜐𝜎

𝜌
− 𝜇 −

𝜐
2
𝜎
2

2𝜌
2
> 0,

𝑓 (1) = −𝜇 < 0.

(55)

As a result we have that

𝑓 (𝑥) > 0 is strictly increasing on 𝑥 ∈ (0, 0 ∨ �̂�) , (56)

𝑓 (𝑥) > 0

is strictly decreasing on 𝑥 ∈ (0 ∨ �̂�, 𝑥∗) ,
(57)

𝑓 (𝑥) < 0 is strictly decreasing on 𝑥 ∈ (𝑥∗, 1) , (58)
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where �̂� and 𝑥∗ are defined as before. Let us now prove result
(49) is true by contradiction. Assume that (49) is false and
thus there must exist 𝜀 ∈ (0, 1) small enough such that

P (Ω
1
) > 𝜀, (59)

where Ω
1
= {𝜔 ∈ Ω : lim

𝑡→∞
sup𝜋(𝑡) ≤ 𝜂 − 2𝜀}. Hence, for

every 𝜔 ∈ Ω
1
, there is 𝑇 = 𝑇(𝜔) > 0 such that

𝜋 (𝑡, 𝜔) ≤ 𝜂 − 𝜀 for 𝑡 ≥ 𝑇 (𝜔) . (60)

Clearly we can choose 𝜀 so small such that𝑓(0) > 𝑓(𝜂−𝜀).
Therefore, from (56), (57), and (60), we have that𝑓(𝜋(𝑡, 𝜔)) >
𝑓(𝜂 − 𝜀) for 𝑡 ≥ 𝑇(𝜔). Let us now recall that, for 𝑡 ≥ 0,

log (𝜋 (𝑡)) = log (𝜋
0
) + ∫

𝑡

0

𝑓 (𝜋 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) ,

(61)

and then arguing as before, by the large number theorem of
martingales, there is Ω

2
⊂ Ω with P(Ω

2
) = 1, such that, for

every 𝜔 ∈ Ω
2
,

lim
𝑡→∞

1

𝑡
∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) = 0. (62)

Therefore by fixing any 𝜔 ∈ Ω
1
∩ Ω
2
, then, for 𝑡 ≥ 𝑇(𝜔),

log (𝜋 (𝑡, 𝜔)) ≥ log (𝜋
0
) + ∫

𝑇(𝜔)

0

𝑓 (𝜋 (𝑠, 𝜔)) 𝑑𝑠

+ 𝑓 (𝜂 − 𝜀) (𝑡 − 𝑇 (𝜔))

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠, 𝜔) ,

(63)

which implies that

lim
𝑡→∞

inf 1
𝑡
log (𝜋 (𝑡, 𝜔)) ≥ 𝑓 (𝜂 − 𝜀) > 0, (64)

and thus we have that lim
𝑡→∞

𝜋(𝑡, 𝜔) = ∞. This is clearly a
contradiction to (60). Thus, our assumption at the beginning
must be wrong and therefore we obtained our desired result
that

lim
𝑡→∞

sup𝜋 (𝑡) ≥ 𝜂 a.s. (65)

Similarly, we will prove (50) by assuming again that it is false
and thus there must exist 𝛿 ∈ (0, 1) such that

P (Ω
3
) > 𝛿, (66)

where Ω
3
= {𝜔 ∈ Ω : lim

𝑡→∞
inf 𝜋(𝑡) ≥ 𝜂 + 2𝛿}. Hence, for

every 𝜔 ∈ Ω
3
, there is 𝜏 = 𝜏(𝜔) > 0 such that

𝜋 (𝑡, 𝜔) ≥ 𝜂 + 𝛿 for 𝑡 ≥ 𝜏 (𝜔) . (67)

Thus, we have that 𝑓(𝜋(𝑡, 𝜔)) ≤ 𝑓(𝜂 + 𝛿) for 𝑡 ≥ 𝜏(𝜔). Let us
now fix any 𝜔 ∈ Ω

2
∩ Ω
3
; then similarly to before, we would

get that, for 𝑡 ≥ 𝜏(𝜔),

log (𝜋 (𝑡, 𝜔))

≤ log (𝜋
0
) + ∫

𝜏(𝜔)

0

𝑓 (𝜋 (𝑠, 𝜔)) 𝑑𝑠

+ 𝑓 (𝜂 + 𝛿) (𝑡 − 𝜏 (𝜔))

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠, 𝜔) ⇒

lim
𝑡→∞

sup 1
𝑡
log (𝜋 (𝑡, 𝜔)) ≤ 𝑓 (𝜂 + 𝛿) < 0,

(68)

and thus

⇒ lim
𝑡→∞

𝜋 (𝑡, 𝜔) = 0. (69)

This is clearly a contradiction to (67) and thus we have
completed our proof.

In order to allow us to better understand the effect of
the noise intensity 𝜐 on the dynamical behaviour of our SDE
HIV model (14) and its connection to the corresponding
deterministic model (11), we have the following proposition.

Proposition 5. Suppose that 𝑅𝑆
0
> 1. Consider 𝜂 as defined by

(51) as a function of 𝜐 for

0 < 𝜐 <

√2𝜌 (𝜐𝜎 − 𝜇𝜌)

𝜎
= �̂�,

(70)

and then 𝜂 is strictly decreasing and

lim
𝜐→0

𝜂 =
𝜐𝜎 − 𝜇𝜌

𝜐𝜎 − 𝜇𝜌 + 𝜇𝜏
, (71)

which is the equilibrium state of the deterministic HIV model
(11) and

lim
𝜐→�̂�

𝜂 =

{{

{{

{

0, 𝑖𝑓 1 ≤ 𝑅
𝐷

0
≤ 2,

𝜐𝜎 − 2𝜇𝜌

𝜐𝜎 − 2𝜇𝜌 + 𝜇𝜏
, 𝑖𝑓 𝑅

𝐷

0
> 2.

(72)

In other words, the noise intensity 𝜐 lies between the determinis-
tic equilibrium value for𝜋(𝑡), namely, (𝜐𝜎−𝜇𝜌)/(𝜐𝜎−𝜇𝜌+𝜇𝜏),
andmax(0, (𝜐𝜎 − 2𝜇𝜌)/(𝜐𝜎 − 2𝜇𝜌 + 𝜇𝜏)). Furthermore, if the
noise intensity decreases to zero, then 𝜂 will increase to the
deterministic equilibrium value. If 𝑅𝐷

0
is large, then 𝜂 will be

close to but beneath the deterministic equilibrium value for
𝜋(𝑡).

Proof. Let us recall that

𝜂 =

𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2

2𝜇𝜏 + 𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2

. (73)
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Then,

𝑑𝜂

𝑑𝜐

=
−4𝜇
2
𝜐𝜎
2
𝜏

(𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2
)
1/2

(2𝜇𝜏 + 𝜐𝜎 − 2𝜇𝜌 + (𝜐
2
𝜎
2
− 2𝜇𝜐

2
𝜎
2
)
1/2

)

2
.

(74)

Clearly, 𝑑𝜂/𝑑𝜐 < 0 since 𝜎 > 0 and thus 𝜂 is strictly deceasing
as 𝜐 increases. By letting 𝜐 tend to zero in the function for
𝜂 defined above, we have the desired result given in (71).
Moreover, as 𝜐 → �̂�, we have that

lim
𝜐→�̂�

𝜂 =

𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇�̂�

2
𝜎
2

2𝜇𝜏 + 𝜐𝜎 − 2𝜇𝜌 + √𝜐
2
𝜎
2
− 2𝜇�̂�

2
𝜎
2

. (75)

The numerator of the above expression is equal to


𝜐𝜎 − 2𝜇𝜌


+ 𝜐𝜎 − 2𝜇𝜌. (76)

As a result, if 1 ≤ 𝑅
𝐷

0
≤ 2, then it is obvious that

lim
𝜐→�̂�

𝜂 = 0. On the other hand, if 𝑅𝐷
0
> 2, then lim

𝜐→�̂�
𝜂 =

(𝜐𝜎−2𝜇𝜌)/(𝜐𝜎−2𝜇𝜌+𝜇𝜏).We have completed the proof.

6. Stationary Distribution

In this section, we will use the well-knownKhasminskii theo-
rem [31] to prove that there exists a stationary distribution for
our stochastic HIV model (14). Before we begin, let us recall
the conditions for the existence of a stationary distribution
mentioned in [31].

Lemma 6. The SDE HIV model (14) has a unique stationary
distribution if there is a strictly proper subinterval (𝑎, 𝑏) of (0, 1)
such that E(𝜏) < ∞ for all 𝜋

0
∈ (0, 𝑎) ∪ (𝑏, 1), where

𝜏 = inf {𝑡 ≥ 0 : 𝜋 (𝑡) ∈ (𝑎, 𝑏)} ,

sup
𝜋0∈[𝑎,𝑏]

E (𝜏) < ∞

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑖𝑛𝑡𝑒𝑟V𝑎𝑙 [𝑎, 𝑏] ⊂ (0, 1) .

(77)

Note that, in the original Khasminskii theorem, there is
an additional condition which states that the square of the
diffusion coefficient of the SDE HIV model (14), namely,

(
(1 − 𝜋 (𝑡)) 𝜋 (𝑡) 𝜐𝜎

𝜋 (𝑡) 𝜏 + 𝜌 − 𝜋 (𝑡) 𝜌
)

2

, (78)

is bounded away from zero for 𝜋(𝑡) ∈ (𝑎, 𝑏). However,
recalling from the proof ofTheorem 1, we have already shown
that the denominator, (𝜋(𝑡)𝜏 + 𝜌 − 𝜋(𝑡)𝜌), is bounded away
from zero (it is at least min(𝜏, 𝜌)). Thus it is therefore clear
that this condition holds for our model.

Theorem 7. If 𝑅𝑆
0
> 1, then the SDE HIV model (14) has a

unique stationary distribution.

Proof. Let us fix any 0 < 𝑎 < 𝜂 < 𝑏 < 1. From conditions
(56)–(58) in the proof for Theorem 4 we can see that

𝑓 (𝑥) ≥ 𝑓 (0) ∧ 𝑓 (𝑎) > 0 if 0 < 𝑥 ≤ 𝑎,

𝑓 (𝑥) ≤ 𝑓 (𝑏) < 0 if 𝑏 ≤ 𝑥 < 1.
(79)

Let us now define the stopping time 𝜏 as we did in Lemma 6.
Recall that

log (𝜋 (𝑡)) = log (𝜋
0
) + ∫

𝑡

0

𝑓 (𝜋 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

(1 − 𝜋 (𝑠)) 𝜐𝜎

𝜋 (𝑠) 𝜏 + 𝜌 − 𝜋 (𝑠) 𝜌
𝑑𝐵 (𝑠) ,

(80)

and then, by using (79), we have that, for all 𝑡 ≥ 0 and for any
𝜋
0
∈ (0, 𝑎),

log (𝑎) ≥ E log (𝜋 (𝑡 ∧ 𝜏))

≥ log (𝜋
0
) + (𝑓 (0) ∧ 𝑓 (𝑎))E (𝑡 ∧ 𝜏) ,

(81)

and then

log( 𝑎

𝜋
0

) ≥ (𝑓 (0) ∧ 𝑓 (𝑎))E (𝑡 ∧ 𝜏) . (82)

By letting 𝑡 → ∞, we have that for all 𝜋
0
∈ (0, 𝑎)

E (𝜏) ≤
log (𝑎/𝜋

0
)

𝑓 (0) ∧ 𝑓 (𝑎)
. (83)

Similarly, for any 𝜋
0
∈ (𝑏, 1), we have that

log (𝑏) ≤ E log (𝜋 (𝑡 ∧ 𝜏))

≤ log (𝜋
0
) −


𝑓 (𝑏)


E (𝑡 ∧ 𝜏) , ∀𝑡 ≥ 0,

(84)

and then

log( 𝑏

𝜋
0

) ≤ −

𝑓 (𝑏)


E (𝑡 ∧ 𝜏) . (85)

By letting 𝑡 → ∞, we have that

E (𝜏) ≤
log (𝜋

0
/𝑏)


𝑓 (𝑏)



≤
log (1/𝑏)

𝑓 (𝑏)



∀𝜋
0
∈ (𝑏, 1) . (86)

Clearly, the conditions required for existence of a unique
stationary distribution mentioned in Lemma 6 are satisfied
by (83) and (86) and thus we have completed our proof
and our SDE HIV model (14) has a unique stationary
distribution.

7. Simulations

In this section we will support our analytical results using
numerical simulations produced in 𝑅. Throughout this sec-
tion, various simulations are produced using realistic param-
eter values but our main objective is to verify the analytic
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Figure 1: Computer simulations of the path 𝜋(𝑡) for the SDE HIV
model (14) and its corresponding deterministic HIVmodel (11) with
step size Δ = 0.01 with parameter values given in Example 8 with
initial value 𝜋(0) = 0.5.

results. Before we begin, let us make the same assumptions
as in [5]. Without loss of generality, let us take 𝑝 = 0 and
assume that all PWIDs visit shooting galleries at the same
rate whether or not they are infected and thus 𝜆

1
= 𝜆
2
. In

addition, we take 𝜙
1
= 𝜃
1
= 0 as these probabilities are very

small.

7.1. Simulations on Extinction. In this section, we will focus
on looking at the numerical simulations produced which
support the analytical results given inTheorems 2 and 3.

Example 8 (𝑅𝑆
0
< 1, 𝜐

2
≤ 𝜐𝜌/𝜎). Let us choose realistic

parameter values 𝜇 = 0.258/year = 7.06849 × 10−4/day [7],
𝜆
1
= 𝜆
2
= 0.143, 𝛼 = (𝑃

1
+ 𝑃
3
) = 0.01, 𝜃 = (𝑃

1
+ 𝑃
2
) = 0.25,

𝛾 = 1 (based on [5]), and 𝜉 = 0.6 [10]; then, from (1) and
(4), we have that 𝜎 = 0.0572, 𝜏 = 0.143, 𝜌 = 0.1001, and
𝜐 = 0.00143. Then by choosing 𝜐 = 0.046, we have that

𝜐
2
= 0.002116 <

𝜐𝜌

𝜎
= 0.0025025, (87)

where 𝑅𝑆
0
= 0.66729 < 1 while 𝑅𝐷

0
= 1.156. Therefore, by

Theorem 2, we would expect the solution 𝜋(𝑡) to reach zero
with probability one.

The computer simulation produced in 𝑅 using the Euler-
Maruyamamethod ([21, 28]) with the above parameter values
is given in Figure 1, which clearly illustrates that 𝜋(𝑡) hits zero
in finite time a.s. The numerical simulations were repeated
numerous times with different initial value of 𝜋

0
∈ (0, 1) and

similar results were obtained each time.
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Figure 2: Computer simulations of the path 𝜋(𝑡) for the SDE HIV
model (14) and its corresponding deterministic HIVmodel (11) with
step size Δ = 0.01 using parameter values given in Example 9 with
initial value 𝜋(0) = 0.5.

Example 9 (𝑅𝑆
0
< 1, 𝜐

2
> 𝜐𝜌/𝜎 ∨ 𝜐

2
/2𝜇). By using the same

parameter values as in Example 8 but choosing 𝜐 to be 0.07
and thus 𝜐2 = 0.0049, we have that

𝜐
2
>
𝜐𝜌

𝜎
∨
𝜐
2

2𝜇
, (88)

where𝑅𝑆
0
= 0.02425249 < 1while𝑅𝐷

0
= 1.156035. As a result,

by Theorem 3, we could conclude that, for any initial value
𝜋(0) = 𝜋

0
∈ (0, 1), the solution 𝜋(𝑡) obeys

lim
𝑡→∞

sup 1
𝑡
log (𝜋 (𝑡)) ≤ −0.000498186 < 0 a.s. (89)

Clearly Figure 2 supports this result by showing that the
solution 𝜋(𝑡) reaches zero at finite time. Again, the numerical
simulations were repeated several times with different initial
values and the same results were concluded.

7.2. Simulation on Persistence. We will now move on to the
numerical simulations for results given in Theorem 4 and
Proposition 5.

Example 10 (𝑅𝑆
0
> 1). Let us use the same parameter values as

in Example 8 but changing 𝜇 to 0.125/year and thus 3.42466×
10
−4/day [4]. Let us define 𝜐 = 0.05 and thus 𝑅𝐷

0
= 2.386057

and 𝑅𝑆
0
= 1.1942 > 1. Therefore by Theorem 4, for any given

initial value 𝜋
0
= 𝜋(0) ∈ (0, 1), the solution 𝜋(𝑡) for the SDE

HIV model (14) should obey

lim
𝑡→∞

inf 𝜋 (𝑡) ≤ 𝜂 = 0.3206092 ≤ lim
𝑡→∞

sup𝜋 (𝑡) a.s. (90)
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Figure 3: Computer simulations of the path 𝜋(𝑡) for the SDE HIV
model (14) and its corresponding deterministic HIVmodel (11) with
step size Δ = 0.01 using parameter values given in Example 10 with
initial value 𝜋(0) = 0.3.
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Figure 4: Computer simulations of the path 𝜋(𝑡) for the SDE HIV
model (14) and its corresponding deterministic HIVmodel (11) with
step size Δ = 0.01 using parameter values given in Example 11 with
initial value 𝜋(0) = 0.3.

Figure 3 clearly supports our analytical results given in
Theorem 4 by showing the solution path of 𝜋(𝑡) oscillates
around the level 𝜂 in finite time. Again the numerical
simulations were repeated and the same conclusion can be
drawn each time.

In order to further illustrate the effect of the noise
intensity 𝜐 has on the solution, in the next example we will
keep all the parameter values the same as in Example 10 but
reducing the noise intensity.

Example 11. By keeping the parameter values the same as
in Example 10 and reducing 𝜐 to 0.02, we have that 𝑅𝐷

0
=

2.38605, 𝑅
𝑆

0
= 2.195363 > 1, and 𝜂 = 0.4770654. By

Theorem 4 and Proposition 5, we would expect the solution
𝜋(𝑡) to persist and oscillate around the level 𝜂. Furthermore
by Proposition 5, as 𝜐 → 0, wewould expect 𝜂 to tend towards
the deterministic equilibrium value for the corresponding
deterministic model given by (11); namely, (𝜐𝜎 − 𝜇𝜌)/(𝜐𝜎 −
𝜇𝜌 + 𝜇𝜏) = 0.4924476.

From Figure 4, we can clearly see that the solution path
𝜋(𝑡) does indeed oscillate about the level 𝜂. Moreover, by
comparing Figures 3 and 4, we can also see that as we reduce
the noise intensity from 0.05 to 0.02, the level 𝜂 does indeed
tend towards the deterministic equilibrium value as expected.

In the next example we will use histograms to see how the
solution of the SDE HIV model oscillates around the level 𝜂
as we vary the noise intensity 𝜐.

Example 12. Let us use the same parameter values as in
Example 10 and choose 𝜐 to be 0.05, 0.04, 0.03, 0.005, and
0.001. We then let the simulations run for 1 million iterations
but disregarding the first 800,000 iterations in order to allow
𝜋(𝑡) to reach its recurrent level.

From Figure 5, we can see from the histograms that, for
larger 𝜐, the distribution of the solution is more skewed,
while, for smaller 𝜐, the distribution is more normally
distributed about the level 𝜂. This is further confirmed by the
sample skewness coefficients, namely, 1.000705, 0.4264459,
−0.3415049, 0.2185976, and 0.003324568 corresponding to
𝜐 = 0.05, 0.04, 0.03, 0.005, and 0.001, respectively.

Furthermore, we have used the quantile-quantile plot
(QQ plot) to further illustrate that, for the smaller values of
𝜐, these data are not far from being normally distributed.The
result is shown in Figure 6.

8. Conclusion

In this paper we have introduced environmental stochasticity
into the extended Kaplan model for the spread of HIV
amongst PWIDs constructed by Greenhalgh and Hay [5].
Inspired by the work done on introducing stochasticity by
parameter perturbation into the SIS epidemic model in [21],
we explored the properties for the resulting stochastic HIV
model by first proving that there exists a unique nonnegative
solution 𝜋(𝑡) for any given initial value 𝜋

0
∈ (0, 1). Further-

more, we have constructed the basic reproduction number
for the stochastic model, namely, 𝑅𝑆

0
, and the conditions

required for extinction and persistence for our solution 𝜋(𝑡).
In general, if𝑅𝑆

0
< 1, the solution will almost surely go extinct

as shown in Theorems 2 and 3. There is a gap in our results
if 𝑅𝑆
0
and 𝜐𝜌/𝜎 < 𝜐

2
< 𝜐
2
/2𝜇 but here we conjecture that

disease will always die out. This conjecture was supported by
simulation. On the other hand, the solutionwill almost surely
persist and oscillate around the level 𝜂 if 𝑅𝑆

0
> 1 as shown in

Theorem4.Most importantly, we have shown that, by altering
the noise intensity 𝜐, it will affect the dynamical behaviour of
our system.
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By using the well-known Khasminskii theorem, we have
shown that the SDE HIV model has a unique stationary
distribution. Lastly, numerical simulations using realistic
parameter values are constructed to support our analytical
results.

Note that 𝑅𝑆
0
has a natural interpretation as follows: if we

consider introducing a single newly infected individual into
the disease-free equilibrium (DFE) and consider the number
of secondary cases that he or she produces, then near theDFE
equation (14) becomes

𝑑𝜋 (𝑡) = 𝜋(
𝜐𝜎

𝜌
− 𝜇)𝑑𝑡 +

𝜐𝜎

𝜌
𝜋𝑑𝐵, (91)

with solution

𝜋 (𝑡)

= 𝜋
0
exp[{(𝜐𝜎

𝜌
− 𝜇) −

1

2

𝜐
2
𝜎
2

𝜌
2
} 𝑡 +

𝜐𝜎

𝜌
𝐵 (𝑡)] .

(92)

Also lim
𝑡→∞

|𝐵(𝑡)|/𝑡 = 0 a.s. Hence we expect that if

𝑅
𝑆

0
= (

𝜐𝜎

𝜇𝜌
) −

𝜐
2
𝜎
2

2𝜌
2
𝜇
< 1, (93)

then the disease dies out whereas if 𝑅𝑆
0
> 1, the disease

takes off.Thus this is a natural biological interpretation of the
stochastic basic reproduction number 𝑅𝑆

0
.

Deterministic models have in the past proved very useful
in describing the spread of HIV amongst PWIDs but they
have their faults. The real world is stochastic and in general
stochastic models are more realistic than deterministic ones.
Recall that

𝑅
𝑆

0
= 𝑅
𝐷

0
−
𝜐
2
𝜎
2

2𝜌
2
𝜇
, (94)

where 𝑅𝐷
0
represents the basic reproduction number in the

deterministic model. So in the deterministic model 𝑅𝐷
0
is the

expected number of secondary cases caused by a single newly
infected PWID entering a population consisting entirely of
susceptible PWIDs and uninfected needles. The second term
in (94) is an adjustment factor for the stochastic model.

In the deterministic model we have a straightforward
scenario where if the basic reproduction number 𝑅𝐷

0
≤ 1,

then it is known that the disease will die out, whereas if
𝑅
𝐷

0
> 1, then the disease will persist. The results in this paper

show that, in the stochastic model, if 𝑅𝑆
0
< 1, then the disease

dies out (almost surely), whereas if 𝑅𝑆
0
> 1, then the disease

ultimately persists and oscillates about a nonzero level. These
theoretical results are confirmed by numerical simulations.
Moreover the argument above shows that if a single newly
infected PWID enters the DFE, then we expect the disease to
die out if 𝑅𝑆

0
< 1 and take off if 𝑅𝑆

0
> 1.

These findings provide new insights into the spread of
HIV amongst PWIDs. Because the stochastic basic repro-
duction number 𝑅𝑆

0
is less than the deterministic one, it is

possible for the noise to drive the disease to extinction, that

is, if 𝑅𝐷
0
> 1, so that in the deterministic model the disease

will persist; then if the stochastic noise is large enough, in the
stochastic model the disease will die out. This has important
implications for control strategies.Deterministicmodels have
often been used to predict control strategies, for example, the
fraction of PWIDs who must clean their needles after use,
the effects of HIV testing, or the amount that PWIDs need
to decrease their syringe sharing rates in order to reduce 𝑅𝐷

0

beneath one and eliminate disease. Examples of this applied
to HIV amongst PWIDs include Greenhalgh and Lewis [32],
Lewis [33] as well as Lewis and Greenhalgh [34]. Examples
applied to hepatitis C virus (HCV) control include Corson
[35] and Corson et al. [23].

The analytical and numerical results of this paper provide
new insight into this. If there is significant stochastic noise in
the system, then these estimates will be overestimated; that
is, a smaller fraction of PWIDs cleaning their needles or a
smaller reduction in PWID syringe sharing rates will still be
sufficient for elimination of disease transmission.
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