Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Effect of alignment perturbations in a trans-tibial prosthesis user : a pilot study

Courtney, Anna and Orendurff, Michael S. and Buis, Adrianus (2016) Effect of alignment perturbations in a trans-tibial prosthesis user : a pilot study. Journal of Rehabilitation Medicine, 48 (4). pp. 396-401. ISSN 1650-1977

Text (Courtney-etal-JRM-2015-The-effect-of-alignment-perturbations-in-a-trans-tibial-prosthesis-user)
Courtney_etal_JRM_2015_The_effect_of_alignment_perturbations_in_a_trans_tibial_prosthesis_user.pdf - Accepted Author Manuscript

Download (626kB) | Preview


A recurring complication voiced by trans-tibial prosthetic limb users is ‘poor socket fit’ with painful residuum-socket interfaces, a consequence of excess pressure. This is attributable to both poor socket fit and poor socket alignment, however, their interaction has not been quantified. Through evaluation of kinetic data this study aimed to articulate an interaction uniting socket design, alignment and interface pressures (IPs). Results will help refine future studies, which will help determine if sockets can be designed, fitted and aligned to maximise mobility whilst minimising injurious forces. IPs were recorded throughout ambulation in one user with ‘optimal (reference) alignment’ followed by five malalignments in a patellar tendon-bearing (PTB) and a hydrocast socket. Marked differences in pressure distribution were discovered when equating the PTB against the hydrocast socket and when comparing IPs from reference to offset alignment. PTB sockets were established more sensitive to alignment perturbations than hydrocast sockets. A complex interaction was found, with the most prominent finding demonstrating the requisite for attainment of optimal alignment: a translational alignment error of 10mm can increase maximum peak pressures by 227 percent (x̄=17.5%). Refinements for future trials have been established, as has the necessity for future research regarding socket design, alignment and IPs.