
 1 

Fully Coupled Peridynamic Thermomechanics 
 

Selda Oterkus and Erdogan Madenci
* 

Department of Aerospace and Mechanical Engineering, The University of Arizona, 

Tucson, AZ 85721, USA 

 

Abigail Agwai 

Intel Corporation, Chandler, AZ 85226, USA 

 

ABSTRACT  

 

This study concerns the derivation of the coupled peridynamic (PD) thermomechanics 

equations based on thermodynamic considerations. The generalized peridynamic model 

for fully coupled thermomechanics is derived using the conservation of energy and the 

free-energy function. Subsequently, the bond-based coupled PD thermomechanics 

equations are obtained by reducing the generalized formulation. These equations are also 

cast into their nondimensional forms. After describing the numerical solution scheme, 

solutions to certain coupled thermomechanical problems with known previous solutions 

are presented. 

 

1. Introduction  

Thermomechanics concerns the influence of the thermal state of a solid body on the 

deformation and the influence of the deformation on the thermal state. In many cases, the 

effect of the deformation field on the thermal state may be ignored. This leads to a 

decoupled or uncoupled thermomechanical analysis, for which only the effect of the 

temperature field on the deformation is present. However, the uncoupled 

thermomechanics may not be satisfactory for certain transient problems. Experimental 

verification of the influence of the deformation on the thermal state exists (Thomson 

1853, Stanley 2008).  It was shown that an adiabatic solid experiences a temperature drop 

when it is strained in tension (Chadwick 1960, Fung 1965). Also, elastic bodies under 

tensile loading experience cooling below the yield stress; however, beyond the yield 

stress the bodies heat up due to the irreversible nature of plasticity (Nowinski 1978). 

 

Also, the temperature field induced by structural loading may not be uniform. For 

example, when a beam with an initially uniform temperature is under bending, part of the 

beam is in tension while the other part is in compression. Due to the thermomechanical 

coupling, the part of the beam that is in tension cools and the region that is in 

compression heats up, establishing a thermal gradient. This leads to the onset of heat 

diffusion. The heat flow is irreversible; thus, some of the mechanical energy supplied to 

bend the beam is dissipated through its conversion to heat energy. This phenomenon is 

called thermoelastic damping and it plays a critical role in vibrations and wave 

propagation.  

 

It is well known that during fracture in metals a plastic region, in which the material has 

locally yielded, occurs ahead of the crack tip. As a result, the mechanical energy is 

dissipated as heat and the temperature rises in the local region ahead of the crack tip. A 
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slightly different phenomenon is observed for fracture in polymers.  During fracture in 

polymers, it was experimentally observed that thermoelastic cooling is followed by a 

temperature rise due to the plastic zone and/or fracture process itself which exposes new 

surfaces (Rittel 1998).  Consequently, in order to accurately model fracture, especially 

the crack tip, thermal consideration needs to be taken into account and a coupled 

thermomechanical analysis becomes necessary. The thermal and structural interaction 

becomes especially important for high-speed impact and penetration fracture problems 

(Brünig et al. 2011). 

 

The derivation of the classical thermomechanics equation from a thermodynamic 

perspective did not occur till the mid 1950s (Biot 1956). Biot used generalized 

irreversible thermodynamics to formulate the classical thermomechanical laws in 

variational form, with the corresponding Euler equations representing the coupled 

momentum and energy equations. 

 

The fully coupled thermomechanical equations based on the classical theory are well 

established. The classical equations of thermoelasticity are comprised of the deformation 

equation of motion with a thermoelastic constitutive law and the heat transfer equation 

with a structural (or deformational) heating and cooling term contributing to the thermal 

energy. For isotropic materials, the thermoelastic constitutive law includes the thermal 

stresses, which are related to the temperature gradient, while the structural heating and 

cooling are dependent on the thermal modulus and rate of dilatation. Depending on the 

structural idealization, the thermal modulus is defined as 
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in which E is the elastic modulus,   is the coefficient of thermal expansion, and   is the 

Poisson’s ratio. The parameters   and   are Lamé’s constants. 

 

Typically, the strength of coupling is measured via the nondimensional quantity known 

as the coupling coefficient and defined as 
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for which   is the mass density, vc  is the specific heat capacity, and 0  is the reference 

temperature at which the stress in the body is zero (Nowinski 1978).  The presence of 

coupling makes the computational solution significantly complicated. If the coupling 
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coefficient, Eq. (2) is small compared to unity, the presence of coupling may be 

disregarded.  The coupling coefficients for metals are significantly lower than those of 

plastics. Steel, for example, has a coupling coefficient of about 0.011 while certain 

plastics have a value of 0.43 . 

 

2. Local Theory 

Various researchers analytically examined plane waves in thermoelastic solids 

(Chadwick and Sneddon 1958, Deresiewicz 1957). In a one-dimensional formulation, 

they showed that the presence of thermal and elastic waves, which are dispersed and 

attenuated. They also studied the effect of frequency on the phase velocity, attenuation, 

and damping. Later, Chadwick (1962) extended the analysis to two dimensions and 

investigated the propagation of thermoelastic waves in thin plates. Paria (1958) 

determined the temperature and stress distribution of a two-dimensional half-space 

problem using Laplace and Hankel transforms. Laplace transforms have also been used 

by Boley and Hetnarski (1968) to characterize propagating discontinuities in various one-

dimensional coupled thermoelastic problems. Fourier transforms were employed by 

Boley and Tolins (1962) to determine the mechanical and thermal response of a one-

dimensional semi-infinite bar with transient boundary conditions. The major challenge 

with transform methods is in finding the analytical inverse transforms—in many cases 

this is not possible and numerical inversion is necessary. Other analytical solution 

methods have been adopted to solve coupled thermoelastic problems. Soler and Brull 

(1965) used perturbation techniques and more recently Lychev et al. (2010) determined a 

closed-form solution by an expansion of the eigenfunctions generated by the coupled 

equations of motion and heat conduction.  

 

Numerical approximations to the classical thermoelastic equations have been very 

commonly found using the finite element (FE) method. A transient thermoelastic FE 

model was developed by Nickell and Sackman (1968) and Ting and Chen (1982). The 

approximations from their FE model were compared against analytical solutions for 

various one-dimensional semi-infinite problems. Oden (1969) and Givoli and Rand 

(1995) developed dynamic thermoelastic FE models. Additionally, Chen and Weng 

(1988, 1989a, 1989b) modeled various thermoelastic problems such as the transient 

response of an axisymmetric infinite cylinder and an infinitely long plate using a finite 

element formulation in the Laplace transform domain. Hosseini-Tehrani and Eslami 

(2000) presented solutions for thermal and mechanical shocks in a finite domain based on 

the boundary element method (BEM) in conjunction with the Laplace-transform method 

in a time domain. They provided results for small time durations (early stages of the 

shock loads) using the numerical inversion of the Laplace-transform method.  

 

Numerical solution schemes for thermomechanical problems are divided into two 

categories—monolithic schemes and staggered schemes. In monolithic schemes, the 

differential equations for different variables are solved simultaneously. On the other 

hand, for staggered or partitioned schemes, the solutions of the different variables are 

determined separately. In general, the staggered schemes have been favored over 

monolithic schemes, as the monolithic systems can be very large, making it unfeasible to 

solve practical problems. In addition, the mechanical and thermal parts of a 
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thermomechanical problem may have very different time scales, hence requiring different 

time stepping schemes. However, the very nature of monolithic schemes renders this 

impossible.  

 

One of the major issues associated with staggered numerical analysis of coupled 

thermomechanics is the concern of stability. When conditionally stable techniques are 

used to solve the coupled momentum and energy equations, a small time step size is 

required, which may be computationally impractical for certain problems. Even when 

various unconditionally stable methods are used to solve the equation of motion and heat 

transfer equation, the overall solution to the coupled problem may still be conditionally 

stable. A substantial amount of work has been done to combat this issue and to develop 

unconditionally stable staggered algorithms. Examples of such algorithms based on the 

finite element method include an adiabatic split scheme by Armero and Simo (1992) and 

various implicit-implicit and implicit-explicit schemes (Farhat et al. 1991, Liu and Zhang 

1983, Liu and Chang 1985). 

 

Although the solution to the local thermomechanical governing equations provides 

accurate deformation and temperature fields by employing the FE and BE methods, it 

presents singular stress and thermal flux in the presence of cracks due to undefined 

spatial derivatives of displacements and temperature at crack tips or along crack surfaces.  

When linear elastic fracture mechanics is adopted into the FE and BE analysis, special 

treatment is commonly needed in order to capture the correct singular behavior 

(mathematical artifact) at the crack tip.  By using nonlocal theory, Eringen and Kim 

(1974a, b) showed that the stress field ahead of the crack tip is bounded as the crack tip is 

approached asymptotically, rather than unbounded as predicted by the classical 

continuum theory.  The advantage of the nonlocal theory over the local theory in the area 

of fracture is made obvious by the fact that the nonlocal model predicts a physically 

meaningful finite stress field at the crack tip.  Recently, Silling (2000) introduced a 

nonlocal theory that does not require spatial derivatives - the peridynamic (PD) theory.  

The governing field equations are valid regardless of the existence of a discontinuity.  

Furthermore, the PD theory permits crack initiation and growth through an internal 

failure parameter without modifying the computational thermal and deformation 

domains.  

 

3. Nonlocal Theory  

Research on nonlocal coupled thermomechanics is undoubtedly emerging. Classical 

nonlinear constitutive equations for nonlocal fully coupled thermoelasticity were 

presented by Huang (1999).  Recently, Ardito and Comi (2009) have developed a fully 

nonlocal thermoelastic model that has an internal length scale.  They analytically solved 

the nonlocal equations in order to determine the dissipation in microelectromechanical 

resonators.  Comparison of their results with experimental observations revealed that the 

nonlocal model is able to capture the size effect that the local thermoelastic analysis is 

unable to capture. The work by Ardito and Comi (2009) illustrates the importance of 

nonlocality in small-scale problems.  

 



 5 

With the PD thermomechanical model, not only the problems that require nonlocality 

solvable, such as the microelectromechanical problems, but also the problems with 

discontinuities can be readily modeled. A crack that forms and propagates in a body with 

a varying temperature or temperature gradient is an example of such a problem. 

Therefore, the peridynamic approach to thermomechanics is advantageous as it not only 

accounts for nonlocality but also allows for coupled deformation and temperature fields 

to be determined in spite of cracks and other discontinuities. Uncoupled 

thermomechanics using the bond-based PD theory was developed by Kilic and Madenci 

(2010).  However, no work has been published on fully coupled thermomechanics within 

the peridynamic framework.  

 

4. Peridynamic Thermomechanics 

Similar to the derivation of classical thermomechanical equations (Nowinski 1978), the 

generalized peridynamics for fully coupled thermomechanics is based on irreversible 

thermodynamics, i.e., the conservation of energy and the free energy density function. 

 

4.1 Peridynamic Thermal Diffusion with a Structural Coupling Term 

The first law of thermodynamics based on peridynamic quantities, accounting for the 

conservation of mechanical and thermal energy, has been given by Silling and Lehoucq 

(2010) as  

 

    b bQ qT Y , (3) 

 

where   is the time rate of change of the internal energy storage density, and bq  is the 

prescribed volumetric heat generation per unit mass. The term T Y  represents the 

absorbed power density; it is the dot product of the force state and the time rate of change 

deformation state.  The Appendix provides a brief description and properties of the 

concept of PD states. The absorbed power density in peridynamics is analogous to the 

stress power, σ F  in classical continuum mechanics, where σ  is the Piola stress tensor 

and F  is the deformation gradient tensor. The variable Q  is the rate of heat energy 

exchange with other material points, and it is given by  

 

    , ,    
H

Q h t h t dVx x - x x x - x , (4) 

 

in which h  is the heat flow scalar state.  The domain of integration defined by H  

includes the material points within its family or horizon,  .  The quantity Q  is related to  

 

bQ  as  bQ Q . 

 

The free energy density function is defined as (Silling and Lehoucq 2010)  

 

  S , (5) 
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where   is the absolute temperature and S  is the entropy density. The time derivative of 

Eq. (5) becomes 

 

   S S . (6) 

 

Substituting for   in Eq. (6) from the conservation of energy given in Eq. (3) leads to the 

following expression: 

 

      b bQ qT Y S S . (7) 

 

The functional dependency of the free energy density and the entropy density can be 

defined in terms of the deformation state, time rate of change of the deformation state, 

and the temperature in the form 

 

 , ,  Y Y , (8a) 

 

 , , Y YS S . (8b) 

 

In conjunction with the chain rule, the time rate of change of the free energy density can 

be expressed as 

 

, ,,
         Y Y

Y Y , (9) 

 

where the variable after the subscript comma indicates differentiation. If it is a state 

variable, its differentiation is known as the Fréchet derivative as explained in the 

Appendix. 

 

Substituting from Eq. (7) into Eq. (9) results in  

 

     , , ,
0            b bQ q Y Y

T Y Ys S . (10) 

 

Adopting the assumption of Nowinski (1978) that Y , Y , and   vary independently, 

Eq. (10) leads to 

 

0   b bQ qS , (11a) 

 

,  S , (11b) 

 

, YT , (11c) 

 

,
0 

Y
. (11d) 
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where the first equation is only a special case of dissipation being equal to zero. 

 

By using the free energy density, the first law of thermodynamics, and the Clausius-

Duhem inequality, Silling and Lehoucq (2010), also determined these equations. (11a-

11d).  In addition, they obtained expressions for the equilibrium, eT , and dissipative, d
T , 

parts of force state vector as 

 

   ,, ,  e

YT Y Y , (12a) 

 

 , , 0  d
T Y Y Y . (12b) 

 

Using Eqs. (11b), (11d) and (8b) in conjunction with the chain rule, the time derivative of 

the entropy density may be rewritten in the form 

 

, ,      Y YS . (13) 

 

 

Substituting from Eq. (13) into Eq. (11a) and multiplying by   leads to  

 

, , 0           bQ qY Y . (14) 

 

Based on the classical theory (Nowinski 1978), the specific heat capacity, vc , can be 

related to the classical free energy density,  , as 

,    vc . (15) 

 

The assumption of the classical free energy density at a point being equal to the 

peridynamic free energy density, , leads to 

 

,    vc . (16) 

 

Based on this observation, it is evident that the specific heat capacity has a similar 

meaning in the peridynamic theory as in the classical theory. Therefore, the term ,   

in Eq. (14) can be replaced by  vc . 

 

Based on the classical theory (Fung 1965), the thermal modulus ij  can be related to the 

classical free energy density   through  
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where eij is the strain tensor. Note that   clij cl ij  for isotropic materials. 

 

Analogus to the thermal modulus of the classical theory, thermal modulus state, a vector 

state, Β , can be defined as  

 

, YΒ . (18) 

 

Substituting from Eqs. (4), (16), and (18) into Eq. (14) and after rearranging some of 

terms results in 

 

              , , , , , , ,         v b

H

c t h t h t dV t t t q tx x x - x x x - x x Β x Y x x (19) 

 

Applying the definition of the vector state dot product (see Appendix) renders this 

equation 

 

         

 

, , , ,

                  ,





         



v
H

b

c t h t h t t dV

q t

x x x - x x x - x x Β x - x Y x - x

x
 (20) 

 

in which the term Β Y  represents the effect of deformation on temperature.  This 

implies that only the rate of change of extension influences the temperature; it is 

analogous to the classical heat conduction equation in which only the rate of dilatation 

appears.  The final form of this equation can be obtained by defining Y  and Β  in terms 

of the time rate of change of the extension scalar state, e , and the thermal modulus 

scalar state,  , as 

 




 
 

y y
Β x - x x - x

y y
,  (21a) 

 

 
 

 
e

y y
Y x - x x - x

y y
,  (21b) 

 

in which the extension scalar state, e , and thermal modulus scalar state,  , are defined 

as  

 

 e y x ,  (21c) 

 

,  e ,  (21d) 

 

with y Y  and x X . Thus, Eq. (20) can be recast as 



 9 

 

         

 

, , , ,

                    ,

 



        



v
H

b

c t h t h t t e dV

q t

x x x - x x x - x x x - x x - x

x
 (22)  

 

4.2 Peridynamic Deformation with a Thermal Coupling Term 

Based on the classical linear theory of thermoelasticity (Nowinski 1978), the free energy 

density is a potential function given by 

 

  2

0

1
,

2 2
     



v
ij ijkl ij kl cl ij ij

c
e T c e e e T T , (23) 

 

where ijklc  is the elastic moduli of the material, 0T , and 0  is the reference 

temperature. A similar approach is adopted herein for the derivation of the peridynamic 

deformation equation with a thermal coupling term. 

 

Silling (2009) developed a linearized form of the state-based peridynamics for small 

elastic deformation by introducing the force vector state, T , as 

 

 T = T U , (24) 

 

where U  is the displacement vector state. The free energy density function is expressed 

in terms of U  as 

 

   0 0 1

2
      U Y T U U U , (25) 

 

where 0
Y  and 0T  are defined as the equilibrated deformation and force states, 

respectively. The double state  is called the modulus state, and it is given by Silling 

(2009) as 
0

,= YT . (26) 

 

For linear thermoelastic material response, in accordance with Eq. (23), this form of the 

free energy is modified by including T  and U  as 

 

   0 0 2

0

1
,

2 2
         



vc
T T TU Y T U U U Β U . (27) 

 

Invoking this equation into Eq. (11c) results in the explicit form of the force state as 

 

   TT U Β . (28) 
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It represents the state-based constitutive relation for a linearized peridynamic 

thermoelastic material. Substituting from Eq. (28) into the peridynamic equation of 

motion derived by Silling et al. (2007) results in the following: 

 

     ( , ) , , ( , )               
H

t T t T t dV tu x U Β x x x U Β x x x b x  (29) 

 

in which the term   TΒ x x  represents the effect of the thermal state on deformation. 

For a nonlinear elastic material model, the free energy is composed of a thermal and a 

mechanical component. Therefore, one possible form of the force state can be  

 

 W TT Β , (30) 

 

in which W is the deformational strain energy density and W  is its Fréchet derivative. 

The part of the force state, sT , that includes only the structural deformation can be 

defined as  

 

s WT . (31) 

 

Substituting from these equations into the peridynamic equation of motion derived by 

Silling et al. (2007) can be recast as 

 

     , ( , )                   s s
H

t T T dV tu x T x x B x x T x x B x x b x  (32) 

 

where  ,s s tT T x  and  , s s tT T x ; similar notation is used for Β  and T .  

 

4.3 Bond - Based Peridynamic Thermomechanics 

The general forms of ordinary state-based PD heat transfer equation and equation of 

motion are given by Eqs. (22) and (32).  When the interactions between material points 

are only pairwise, the equation of motion reduces to the bond-based PD as derived by 

Kilic and Madenci (2010) in the form 

 

 
'

,
2 ' 2

 
     

      
H

c c
t T

y y x x y y
u x

x x y y

 
'

                 ,
2 ' 2


     

           

c c
T dV t

y y x x y y
b x

x x y y
. (33) 

 

where c  is referred to as the ―bond constant‖ by Silling and Askari (2005).  For an 

isotropic material, this bond constant can be expressed in term of Young’s Modulus, E  

and horizon size,  .  Comparison of this equation with Eq. (32) leads to the explicit 

forms of  
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'

2 '

    
  

 
s

c y y x x y y
T x x

x x y y
 (34a) 

 

and 

 

2



 



c y y
B x x

y y
. (34b) 

 

Comparison of Eq. (34b) with Eq. (21a) results in the expression for thermal modulus 

scalar state   as  

 

2
  

c
x x . (35) 

 

The difference between the generalized heat transfer equation, and thermomechanical 

heat transfer equation for an isotropic material, Eq. (22), is due to the deformational 

heating and cooling term, ( )  e . Therefore, the bond-based coupled thermomechanical 

heat transfer equation for isotropic materials can be cast as  

 

   , ,
2

  
 

    
 

v h b
H

c
c t f e dV q tx x , (36) 

 

where hf  is the thermal response function, and e  is the time rate of change of the 

extension between the material points.  This extension is defined as  

 

 e η+ξ ξ , (37a) 

 

with its time rate of change  

 

 e
η+ξ

η
η+ξ

 , (37b) 

 

where η  is the time rate of change of the relative displacement vector. Equation (36) can 

be rewritten in terms of the change in temperature, 0T , by replacing   with 

0T  and  with T  as 

 

     , ,
2

  
 

    
 

v h o b
H

c
c T t f T e dV q tx x , (38a) 

 

or 
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   , 1 ,
2

  
  

        
v h o b

H
o

T c
c T t f e dV q tx x . (38b) 

 

As suggested by Nowinski (1978), if the temperature change, T , is very small when 

compared with the reference temperature, o , Eq. (38b) can be approximated as 

 

   , ,
2

  
 

   
 

v h o b
H

c
c T t f e dV q tx x . (39) 

 

Note that for the uncoupled case, this equation reduces to the PD heat conduction 

equation as given by Bobaru and Duangpanya (2010, 2012).  Substituting for the thermal 

response (heat flow density) function, hf  as suggested by Agwai (2011) leads to its final 

form as  

 

   , ,
2


   

 
    

 
v o b

H

c
c T t e dV q tx x

ξ
. (40) 

 

in which ( ) ( )  T Tx x  and  ξ x x  represent the difference in temperature and 

distance between the material points, respectively.  The microconductivity,   is a 

peridynamic material parameter that can be expressed in terms of thermal conductivity, 

k .  It can be obtained by equating the PD thermal potential to the classical thermal 

potential at a point as explained by Agwai (2011).   

From Eq. (33), the bond-based PD equation of motion including the effect of temperature 

can be rewritten as  

 

     , , 


  
 avg

H
t cs c T dV t

ξ η
u x b x

ξ η
, (41) 

 

in which c is the peridynamic material parameter. The initial relative position and relative 

displacement vectors are defined as  ξ x x  and η= u -u , respectively. The parameter 

s  represents the stretch between material points x  and x, and avgT  is the mean value of 

the change in temperatures at material points x  and x defined as 

 

2


avg

T T
T . (42) 

 

Introducing   as the bond-based peridynamic thermal modulus, the final form of the 

fully coupled bond-based thermomechanical equations for isotropic materials become  
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   , ,
2

 
 

 
    

 
v o q

H
c T t e dV h tx x

ξ
, (43a) 

 

 

with q bh q  representing the heat source due to volumetric heat generation, and 

 

     , , 


  
 avg

H
t cs T dV t

ξ η
u x b x

ξ η
, (43b) 

 

with  

 

  c . (43c) 

 

The first equation is the conservation of thermal energy (i.e., the heat transfer equation) 

with a contribution from deformational heating and cooling, and the second equation is 

the conservation of linear momentum (i.e., the equation of motion) with a thermoelastic 

constitutive relation.  

 

5. Nondimensional Form of Thermomechanical Equations 

The nondimensional form of an equation or system of equations involves eliminating the 

units associated with the variables and parameters. For coupled systems, various 

parameters may differ in size and the effects of certain parameters may not be apparent. 

The nondimensional form of equations can permit the effects of the different parameters 

to become more evident. The appropriate scaling, relative measure of quantities, and 

characteristic properties of the system, such as time constants, length scales, and 

resonance frequencies, can be revealed through nondimensionalization.  

 

5.1 Characteristic Length and Time Scales 

The characteristic length/time quantity for heat conduction is the diffusivity defined as  

 
*2

*



 

v

k

c t
, (44) 

 

where *  and 
*t  represent the characteristic length and time, respectively. For the 

equation of motion, the characteristic length/time is the elastic wave speed. The square of 

the elastic wave speed, a , is  

 

  *2
2

*2

2 




 a

t
 , (45) 

 

where   and   are Lamé’s constants. Combining the characteristic length/time scale 

from Eqs. (44) and (45) leads to the characteristic length and time for thermomechanics 

as  
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* *

2
and

 
 t

a a
 . (46) 

 

The characteristic length and time are typically employed in the nondimensionalization of 

the thermomechanical equations.  

 

5.2 Nondimensional Parameters 

The nondimensional form of Eq. (43) can be achieved by adopting the approach by 

Nickell and Sackman (1968) using Eqs. (44) and (45) for thermal diffusivity and the 

square of the elastic wave speed. The nondimensional variables are denoted with an 

overscore. The nondimensionalization procedure for length related variables, i.e., x,  , A, 

and V (the volume), employs the characteristic length, and they are defined as 

 
2 3

, , and
   

 
       

          
       

x x A A V V
a a a a

. (47) 

 

The displacement is nondimensionalized as  

 

 2



 

 
  

 

cl ou u
a

, (48) 

 

The stretch is nondimensionalized as 

 

 2



 






cl os s . (49) 

 

The time is scaled using the characteristic length as  

 

2

 
  
 

t t
a

. (50) 

 

The nondimensionalization for the velocity-related variables are achieved by 

 

   
     and     

2 2

 

   

 
 

 

cl o cl ov av e a e . (51) 

 

Finally, the temperature and temperature difference are nondimensionalized as  

 

     and       o oT T . (52) 

 

It is worth noting that the definitions of thermal modulus, bulk modulus, Lamé constants, 

shear modulus, peridynamic parameters, and microconductivity depend on the structural 
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idealization. Their definitions for one-, two-, and three-dimensional analysis are 

summarized as: 

 

One-dimensional analysis 

2 2

2 2
0, , , ,

2 2


   

  
    clE E k

c
A A

. (53a) 

 

Two-dimensional analysis 

     3 3

9 6
, , , ,

1 1 2 1 2 2


   

        
    

   

clE E E k
c

h h
. (53b) 

 

Three-dimensional analysis 

     4 4

12 6
, , , ,

1 1 2 2 1 3 2


   

       
    

   

clE E E k
c . (53c) 

 

Equating the coefficient of thermal expansion from Eqs. (1) and (43c) leads to the 

thermal modulus as  

 

3 2




 




cl c  for three dimensions , (54a) 

 

2 2




 




cl c  for two dimensions , (54b) 

 

2





 cl c  for one dimension . (54c) 

 

Substituting from Eqs. (47) to (52) with the dimensional considerations from Eq. (53), the 

fully coupled bond-based thermomechanical equations in the absence of body force and 

heat source can be cast into their nondimensional forms:  

 

One-dimensional analysis 

 
2

2 2

2




 
  

  avg
H

s T dV
t A

x

u ξ η
b

ξ η
, (55a) 

 

2

2

2






 
   
 
 

 s
H

T e
dV h

t A
x

ξ
, (55b) 

 

Two-dimensional analysis 

 
  

2

2 3

9 1
1







 
   

  avg
H

s T dV
t h

x

u ξ η
b

ξ η
, (56a) 
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3

6 3
(1 )

4







 
    
 
 

 q
H

T
e dV h

t h
x

ξ
, (56b) 

 

Three-dimensional analysis 
2

2 4

6 1

1



 


   
   

   
 avg

H
s T dV

t
x

u ξ η
b

ξ η
 (57a) 

 

4

6 1

2






 
   
 
 

 q
H

T
e dV h

t
x

ξ
, (57b) 

 

in which the nondimensional coupling coefficient, , body force density, b , and heat 

source due to volumetric heat generation, qh , are defined as  

 

 

2

0

2



  






cl

vc
, (58a) 

 

 
3

0

2  

 




cla
b b , (58b) 

 

2

0







q q

v

h h
c a

. (58c) 

 

The coupling coefficient  measures the strength of thermal and deformation coupling 

and it appears in the nondimensional thermomechanical equations associated with the 

heating and cooling term due to deformation. The coupling coefficient is singled out of 

the nondimensional form of these peridynamic equations in a similar manner as it is 

singled out of the classical thermomechanical equations, as illustrated by Nickell and 

Sackmann (1968). The nondimensional equation represents decoupled thermomechanics 

for 0 . It is worth noting that the equation of motion still contains the effect of 

temperature even if 0 .  

 

6. Boundary conditions 

The resulting PD equations do not contain any spatial derivatives; thus, constraint 

conditions are, in general, not necessary for the solution of an integro-differential 

equations. . However, such conditions can be imposed by prescribing constraints on 

displacement and temperature fields in a ―fictitious material layer‖ along the boundary of 

a nonzero volume.  Based on numerical experiments, Macek and Silling (2007) suggested 

that the extent of the fictitious boundary layer be equal to the horizon,  , in order to 

ensure the imposed prescribed constraints are sufficiently reflected on the actual material 

region. 
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6.1 Temperature and flux constraints 

As shown in Fig. 1, the prescribed boundary temperature, 
bT  can be imposed in a layer of 

fictitious region as  

 

( , ) 2 ( , ) ( , )f f b bT t t T t t T t   x x x  (59) 

 

where fT  and fx  represent the temperature and material points in the fictitious region, 

t . In the case of 0bT  , this representation enforces the temperature variation in the 

fictitious region to become the negative mirror image of the temperature variation near 

the boundary surface in the actual material. 

 

 
 

Figure 1. Imposing temperature and flux constraints  

 

 

 

Application of flux type of boundary condition is accomplished by first calculating the 

rate of heat entering through the bounding surface then converting the heat flow rate, Q  

to a heat generation per unit volume and then specifying this volumetric heat generation 

to material points in the boundary region, b . Assuming the cross sectional area is 

constant for each material point, conversion is achieved by 

 

.
 

     
 


f f

f f f

d
Q

Q
V V

q n
q n q n

  (60) 

 



 18 

where Q  is the volumetric heat generation, q  is the heat flux, f  is the area over which 

the heat flux is applied,   depth (spacing between material points) and fV  is the volume 

of the boundary region.  

 

If there exists no specified flux, *( , ) 0tq x , volumetric heat generation, Q  calculated 

from Eq. (60) vanishes.  Thus, the implementation of zero flux boundary condition can be 

viewed as imposing a zero valued volumetric heat generation.  Alternative to this 

implementation, zero flux can be achieved by assigning the mirror image of the 

temperature values near the boundary in the actual domain to the material points in the 

fictitious region as  

 

( , ) ( , )f fT t t T t x x  (61) 

 

6.2 Displacement/velocity and pressure constraints 

The prescribed displacement or velocity vector bU  and ( )tV  can be imposed through the 

material points in the fictitious material layer. 

 

 , bt u x U   (62a) 

 

and  

 

 , ( )t tu x V  (62b) 

 

The distributed non-dimensional pressure ( , )p tx  is imposed in the form of body force 

density on the material points in the boundary region as 

 

1
( , ) ( , )t p t 


b x x n  (63) 

 

in which n  is unit normal to the boundary. 

 

7. Numerical Procedure 

For numerically approximating the solution to the classical fully coupled equations for 

thermoelasticity, one of two different time stepping strategies is generally employed by 

researchers. The monolithic or simultaneous scheme is one time stepping strategy. For a 

monolithic algorithm, the time stepping scheme is applied simultaneously to the full 

system of equations and the unknown variables are solved for at the same time. If the 

time stepping scheme for the monolithic algorithm is implicit, unconditional stability is 

usually achieved. However, monolithic algorithms can result in practically large systems, 

in spite of their unconditional stability. For the staggered or partitioned scheme, the 

coupled system of equations are split, typically according to two different fields, the 

displacement and temperature fields. Each field is then individually treated with a 

different time stepping algorithm. Staggered algorithms generally circumvent the 
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shortcomings of their monolithic counterparts; however, this is often accomplished at the 

expense of the unconditional stability. In many scenarios, even when unconditionally 

stable time stepping schemes are used to solve each partitioned equation, the overall 

stability of the thermomechanical system of equations is only conditional (Wood 1990). 

As a result, a good deal of work has been performed to successfully develop 

unconditionally stable staggered algorithms for thermoelasticity (Armero and Simo 1992, 

Farhat et al. 1991, Liu and Chang 1985).  

  

For the numerical treatment of the fully coupled thermoelastic peridynamic system of 

equations, a staggered strategy is adopted. The system is partitioned naturally according 

to the structural and thermal fields; thus, the equation of motion is solved for the 

displacement field and the heat transfer equation is solved for the temperature field. 

Explicit time stepping schemes are utilized to approximate the solutions to both 

equations.  

  

In order to illustrate the numerical implementation, one-dimensional peridynamic 

thermoelastic equations, Eq. (55), are considered, and they can be discretized in the forms 

 

 

     

     

        2
1

2

 


 




n n
N

i j i jn n n

i i j i j jn n
j

i j i j

u s T V
A

ξ η

ξ η
, (64a) 

 

and 

 

 

  

  

  

 2
1

2

2



 

 
  
 
 


n n

N
i j i jn

i jn
j

i j

e
T V

A
, (64b) 

 

in which the term 22 / ( ) A  is assumed to be constant throughout the domain, n  

represents the time step number, i  is the collocation point that is being solved for, and j  

represents the collocation points within the horizon of i . The nondimensional volume of 

the subdomain represented by the collocation point j  is denoted by  jV .  

 

The discretization of a one-dimensional domain is illustrated in Fig. 2. The one-

dimensional domain is discretized into subdomains, with the collocation points at the 

center of each subdomain.  
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Figure 2. Discretization of one-dimensional domain with collocation points 

  

 

 

Numerical convergence study performed by Agwai (2011) for thermal and thermomechanical 

analysis suggests the horizon size of 3    which is the same as the horizon size for 

deformation field suggested by Silling and Askari (2005).  The parameter,   is the 
nondimensional spacing between material points.  The material point of interest is denoted by i 
and it interacts with the three points to its left and right. Thus, points j within the horizon of i 

are i-3, i-2, i-1, i+1, i+2, and i+3, as shown in Fig. 2.  The nondimensional displacement, 

velocity, and temperature of all the collocation points are known at the n
th

 time step, i.e., 

the current time step. Based on Fig. 2, Eq. (55a) can be discretized as  
 

 

     

     

        

     

     

        

     

     

        
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     
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3 3 2 2

3 3 3 2 2 22

3 3 2 2

1 1 3 3

1 1 1 3 3

1 1 3 3

2

             



   
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   

   

    

   

  
   
  


 
   

 

n n n n

i i i i i i i in n n n n

i i i i i i i i i i in n n n

i i i i i i i i

n n n n

i i i i i i i in n n n

i i i i i i i i i in n n n

i i i i i i i i

u s T V s T V
A

s T V s T V

ξ η ξ η

ξ η ξ η

ξ η ξ η

ξ η ξ η
 

     
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3
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            



   

     

   

 
   
 


n n n n

i i i i i i i in n n n

i i i i i i i i i in n n n

i i i i i i i i

s T V s V
ξ η ξ η

ξ η ξ η

 (65) 

 

where the nondimensional stretch is denoted by   
n

i j
s , and it is defined as 

 

  

        

  

 


n n n

i j i j i jn

i j n

i j

s
ξ η ξ

ξ
. (66) 

 

The position of the i
th

 and j
th

 collocation points are given by  ix  and  jx , respectively, 

and, as such, the nondimensional relative initial position is defined as 
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      -n

i j j i
ξ x x . (67) 

 

The nondimensional displacements of the i
th

 and j
th

 collocation points are given by 
 
n

i
u  

and 
 
n

j
u , respectively. Therefore, the nondimensional relative displacement becomes 

 

      -n n n

i j j i
η u u , (68a) 

 

and the term 
  
n

i j
T is defined as  

 

  

   

2




n n

j in

i j

T T
T . (68b) 

 

Based on Fig. 2, Eq. (55b) can be discretized as 
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where  

 

        n n n

i j j i
T T , (70a) 

 

and the nondimensional rate of extension between the material points is given by 

 

  

     

     

    


  


n n

i j i jn n n

i j j in n

i j i j

e
η ξ

u u
η ξ

. (70b) 

 

The time integration of Eq. (65) can be performed by using explicit forward and 

backward difference techniques. Similarly, time integration of Eq. (69) can be done by 

using  forward difference time integration scheme.  
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8. Numerical results 

The validity of the fully coupled PD thermomechanical equations is established by 

constructing PD solutions to previously considered problems. The first problem is a semi-

infinite bar subjected to a transient thermal boundary condition. The second problem 

concerns the dynamic response of a thermoelastic bar with an initial sinusoidal velocity. 

The solutions to these problems are obtained by constructing one-dimensional PD 

models.  The third problem is a finite plate subjected to either a pressure shock or a 

thermal shock, and their combination. The solutions to these problems are obtained by 

constructing two-dimensional PD models. The fourth is a block of material subjected to a 

transient thermal boundary condition. The solution to this problem is obtained by 

constructing a three-dimensional PD model.  During the numerical simulations, the 

horizon size is taken as 3.015    
 

8.1 A Semi-Infinite Bar Under Thermal Loading 

A semi-infinite bar is subjected to the temperature boundary condition on the bounding 

end. The bounding end is stress free and is gradually heated. The stress free condition on 

the bounding end is represented by not specifying any displacement or velocity 

conditions. The peridynamic discretization of the bar for thermal and deformational fields 

is shown in Fig. 3. 

 

 
(a) 

 
 

(b) 

 

Figure 3. Peridynamic model of the fields in the one-dimensional bar: (a) thermal, (b) 

deformation 

 

 

The peridynamic predictions for nondimensional temperature and displacement for three 

different coupling scenarios are compared against the classical solution reported by 

Nickell and Sackman (1968). The coupling coefficient values of 0,0.36,1  are used to 

depict the decoupled, moderate, and strong coupling situations, respectively. The initial 

conditions for the peridynamic simulations are specified as 

 

( ,0) ( ,0) ( ,0) 0


  


u
u x x T x

t
 (71) 

 

The bar is subjected to temperature boundary condition as 
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0
(0, )    with 0.25

1


 

 
 

o

o o

o

t
t t

tT t t

t t

 (72) 

 

As shown in Fig. 3, the grid spacing between the material points is 0.025   with grid 

dimensions of 200 1 1  , and the time step size is 30.5 10  t .  The length of the bar is 

modeled as 5L  with a cross sectional area of 
46.25 10 A .  The temperature 

boundary condition is imposed through the fictitious region, t .   

 

Figure 4 provides a comparison of the temperature and displacement distribution 

predicted by the peridynamic simulation against the finite element predictions using 

ANSYS at = 1 for 0,0.36,1 . These results also agree well with those reported by 

Nickell and Sackman (1968). It is evident that for all three degrees of coupling the 

temperature at = 1 increases with time in a very similar fashion while the displacement 

remains zero up until 0.5t . At about time 0.5t , the point 1x  starts to be 

displaced in the positive direction. The effects of coupling become apparent beyond 

0.5t . The temperature and displacement variation for the three degrees of coupling are 

no longer similar. The amplitudes of the temperature and displacement decrease as the 

strength of the coupling is increased. The coupling accelerates the diffusion of heat as 

there appears to be an increase in the amount of thermal and mechanical energy 

dissipated.  
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Figure 4. Displacement and temperature predictions at 1x for different coupling 

coefficients 

 

 

8.2 Thermoelastic Vibration of a Bar 

A bar of finite length is initially subjected to a sinusoidal velocity with zero displacement 

and temperature. The initial velocity is applied with a specified wave number. The ends 

of the bar are fixed with zero temperature and displacement. This particular thermoelastic 

vibration problem was considered by Armero and Simo (1992) using the finite element 

method. Construction of the PD solution is achieved by using the nondimensional form of 
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the equations. In the peridynamic simulation, nondimensional length of the bar is 

100L  with a cross sectional area of 
44 10 A . The initial conditions are specified as  

 

( ,0) ( ,0) 0 u x T x   (73a) 

( ,0) sin





u x
x

t L
 (73b) 

 

The boundary conditions on the left and the right end of the bar are imposed as  

 

(0, ) ( , ) 0 T t T L t  (74a) 

(0, ) ( , ) 0 u t u L t  (74b) 

 

The geometric parameters and the peridynamic discretization for the thermal and 

deformational fields are shown in Fig. 5 4. The grid spacing is specified as 0.02   

leading to dimensions of  5000 1 1  , and the time step size is  41 10  t . The 

temperature and displacement boundary conditions are imposed through the fictitious 

regions, t  
and u , respectively. 

 

 
(a) 

 
(b) 

Figure 5. Peridynamic model of the fields in the one-dimensional bar: (a) thermal, (b) 

deformation 

 

 

The resulting elastic waves are progressive traveling waves. In the case of a fully coupled 

thermoelastic problem, there exist two types of waves: elastic and thermal waves. Both 

types of waves have been modified from their uncoupled forms. The modified elastic 

waves are attenuated, compared to the uncoupled elastic waves, and are subjected to 

dispersion and damping in time. The modified thermal waves also exhibit dispersion and 

damping in time. The peridynamic predictions for the temporal distribution of 

displacement and temperature at 50x  and 25x , respectively, are shown in Fig. 6 for 

coupling coefficients of 0 and 1  The peridynamic predictions are also compared 

with the classical finite element approximations given by Armero and Simo (1992).  

 



 26 

 
 

 
Figure 6. Displacement and temperature variation with time at 50x and 25x , 

respectively 

 

 

Although the PD and classical solutions agree well for this wave length, the PD solution 

captures deviates from the classical solution, and captures the nonlocal effects as the 

horizon approaches the order of the wavelength. 

 

 

8.3 Plate Subjected to a Shock of Pressure and Temperature, and Their 

Combination 

The fully coupled nondimensional PD thermomechanical equations are further verified 

by solving a problem previously considered by Hosseini-Tehrani and Eslami (2000) 

using the Boundary Element Method. It concerns a square plate of isotropic material 
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under either a pressure shock or a thermal shock, and their combination on the free edge 

in the positive -direction.x The nondimensional length and width of the square plate is 10 

and it has a unit thickness.  As shown in Fig. 7, it is clamped at the other edge and the 

insulated horizontal edges are free of any loading. The thermomechanical equations are 

solved for both uncoupled and coupled cases.  The initial conditions are specified as 

 

 , ,0 0T x y  (75a) 

   , ,0 , ,0 0 x yu x y u x y  (75b) 

 

The mechanical and thermal boundary conditions are imposed as 

 

 , 10, , 0 xT x y t  (76a) 

 , , 5, 0  yT x y t  (76b) 

   10, , 10, , 0   x yu x y t u x y t  (76c) 

   , 5, , 5, 0      yy xyx y t x y t  (76d) 

 

where t  is the nondimensional time.  The shock type loading conditions are applied as  

 

Pressure shock 

( 0, , ) 0 T x y t  (77a)
 

2( 0, , ) ( ) 5      t

xx x y t P t t e  (77b) 

 

Thermal shock 
2( 0, , ) 5   tT x y t t e  (78a) 

( 0, , ) 0  xx x y t  (78b) 

 

Combined pressure and thermal shock 

( 0, , ) 5 exp( 2 )  T x y t t t  (79a) 
2( 0, , ) ( ) 5      t

xx x y t P t t e  (79b) 

 

In the peridynamic model, a grid spacing of 0.05   leads to the grid dimensions of 

200 200 1  , and a time step of 30.5 10  t is employed.   
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Figure 7. Geometry and boundary conditions of the plate under pressure or thermal 

shock 

 

 

The peridynamic discretization for the thermal field is shown in Fig. 8. The temperature 

boundary condition is imposed in fictitious region, t . The peridynamic discretization for 

the deformational field is shown in Fig. 9. The displacement boundary condition is 

imposed in fictitious region u . The pressure is applied through boundary layer region 

p . 

  

Figure 8.   Peridynamic model of the thermal field in a plate 
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(a) 

 
(b) 

Figure 9.   Peridynamic model of deformational field in a plate (a) pressure shock (b) 

thermal shock 

 

Figure 10 shows the temperature and displacement variations at 0y  due to the pressure 

shock at times 3t  and 6t . When the coupling coefficient is zero, no temperature 

change is expected. However, when the coupled effect is included, even though 

mechanical loading is applied, temperature change is expected. The compressive stress 

along the boundary causes a temperature rise. As observed in this figure, the peak of the 

temperature distribution moves to the right as time progresses. Figure 10 also shows the 

axial displacement along the x -axis. The PD results are also in close agreement with the 

BEM results (Hosseini-Tehrani and Eslami 2000).  
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Figure 10.  Temperature and displacement variations along the centerline in the plate for 

uncoupled( 0 ) and coupled ( 0 ) cases under pressure shock loading. 

 

 

Figure 11 shows the temperature and displacement variations at 0y due to thermal 

shock at times 3t  and 6t . As observed, the coupling term in the thermal field 

causes a temperature drop, and the peridynamic predictions are in close agreement with 

the BEM solution published by Hosseini-Tehrani and Eslami (2000).  Figure 12 shows 

the temperature and displacement variations at 0y due to combined pressure and 

thermal shock at times 3t  and 6t . The PD predictions are in close agreement with 

the BEM results by Hosseini-Tehrani and Eslami (2000). 
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Figure 11.  Temperature and displacement variations along the centerline in the plate for 

uncoupled( 0 ) and coupled ( 0 ) cases under thermal shock loading. 
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Figure 12.  Temperature and displacement variations along the centerline in the plate for 

uncoupled( 0 ) and coupled ( 0 ) cases under combined thermal and pressure shock 

loading. 

 

 

8.4 A Block of Material Under Thermal Loading 

A three-dimensional finite block of material is gradually heated at one end, and the 

remaining surfaces are insulated. The nondimensional width and height of the square 

cross section of the block are 0.15 and it has a length of 5. As shown in Fig. 13, it is 

clamped at the other end without any other type of loading. The PD discretization of the 

thermal and deformational fields is shown in Fig. 14.   
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Figure 13.  Geometry and boundary conditions of the block under thermal loading  

 

 

The initial conditions are specified as 

 

( , , ,0) ( , , ,0) ( , , ,0) 0


  


u
u x y z x y z T x y z

t
 (80) 

 

The thermal and mechanical boundary conditions are imposed as 

 

0
(0, , , ))

1


 

 
 

o

o

o

t
t t

tT y z t

t t

 (81a)

 

 , , , , 0 xT x L y z t  (81b) 

 , , 0, , 0 yT x y z t  (81c) 

 , , , , 0 yT x y W z t  (81d) 

 , , , 0, 0 zT x y z t  (81e) 

 , , , , 0 zT x y z H t  (81f) 

 

     , , , , , , , , , 0     x y zu x L y z t u x L y z t u x L y z t  (82a) 

     0, , , 0, , , 0, , , 0       xx xy xzx y z t x y z t x y z t  (82b) 

     , 0, , , 0, , , 0, , 0       yy xy yzx y z t x y z t x y z t  (82c) 

     , , , , , , , , , 0       yy xy yzx y W z t x y W z t x y W z t  (82d) 

     , , 0, , , 0, , , 0, 0       zz xz yzx y z t x y z t x y z t  (82e) 

     , , , , , , , , , 0       zz xz yzx y z H t x y z H t x y z H t  (82f) 

 

In the peridynamic model, a grid spacing of 0.025   leads to the grid dimensions of  

200 6 6  , and a time step of 
41 10  t is employed.  
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(a) 

 
(b) 

 

Figure 14.  3-D Peridynamic model of the fields (a) thermal, and (b) deformation 

 

 

As shown in Fig. 15, the PD predictions for temperature and displacement variations 

along the length of the block are compared with the FEA results from ANSYS at 1t

and 2 for 0  and 1 . The comparison indicates excellent agreement. 
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Figure 15.  Displacement and temperature predictions at / 2, / 2 y W z H  for 

coupled and uncoupled cases  

 

 

9. Conclusions 

This study describes the fully coupled structural and thermal peridynamic equations for 

thermomechanical analysis. The derivation of the governing equations is based upon 

thermodynamic considerations. The generalized state-based equations are presented 

along with the bond-based equations. The nondimensional form of the bond-based 

peridynamic thermomechanical equations leads to the coupling coefficient.  A numerical 

scheme for solving the bond-based thermomechanical equations is described and 
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peridynamic predictions are compared against classical solutions.  It can be concluded 

that the peridynamic theory does capture the correct local thermomechanical response.  
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Appendix  
 

Concept of State - The ―state‖ can be viewed as a data bank to extract information about 

the state of material points. For example, the vector states of reference position, X  and 

deformation, Y  provide information about the relative position of material points in the 

reference and deformed configurations.  The mathematical operations for such extraction 

of information are denoted as  

 

   X x x x x ,  (83a) 

 

and 

 

   Y x x y y ,  (83b) 

 

in which  x x  and  y y  represent the relative position of the points x  and x  in the 

reference and deformed configurations.  Similarly, a temperature scalar state,   can 

provide information about the temperatures, T  and T  at these two material points in the 

form 

 

   T Tx - x ,  (84) 

 

As presented by Silling et al. (2007), the dot product of two vector states, A  and D , and 

two scalar states, a  and d  can be cast as 

 

     H dHA D A x x D x x ,  (85a) 

 

and 

 

    Ha d a d dHx x x x ,  (85b) 

 

The Fréchet Derivative - Let a scalar function,   be dependent on a state A , i.e. 

   A .  Its variation is defined as 
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      d dA A A ,  (86) 

 

in which dA  is the differential of A .  Silling et al. (2007) note that if  is differentiable 

then the variation of   can be defined as  

 

   d dA A ,  (87a) 

 

or 

 

 , . d dA A A ,  (87b) 

 

and the term    ,  AA A  is called the Fréchet derivative of   at A .  Since   is 

a scalar value function,  ,
A

A  is a state of the same order as A .  Fréchet derivatives of 

various functions of states are given by Silling et al. (2007) and Silling and Lehoucq 

(2010). 
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