Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins

Ahn, J.H. and Jang, J.E. and Oh, C.G. and Ihm, S.K. and Cortez, J. and Sherrington, D.C. (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules, 39 (2). pp. 627-632. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Synthesis of Davankov-type hyper-cross-linked resin beads has been carried out using gel-type and permanently porous poly(divinylbenzene-co-vinylbenzyl chloride) (DVB-VBC) precursor resins without any external electrophile. Of the Lewis acids examined (FeCl3, AlCl3, SnCl4), FeCl3 was by far the most effective catalyst. Rather remarkably in the case of a gel-type 2 mol % DVB-VBC precursor, extensive microporosity was generated within only 15 min of initiating the cross-linking reaction, yielding a surface area (N-2 sorption/BET) of similar to 1200 in which rose steadily to a maximum approaching 2000 m(2) g(-1) in after 18 h. In the case of porous DVB-VBC precursor resins, the presence of discrete pores in the precursor, accompanied by a micropore fraction on hyper-cross-linking, yields resins with a clearly bimodal distribution of pores. Manipulation of the Friedel-Crafts reaction variables and the structure of the precursor resin allows final resin products to be prepared with surface areas in the range similar to 300-2000 m(2) g(-1).