Simulation of spark dynamic plasma resistance and inductance using PSpice

Hogg, M. and Timoshkin, I. and MacGregor, S. and Given, M and Wilson, M. and Wang, T.; Garner, Allan, ed. (2014) Simulation of spark dynamic plasma resistance and inductance using PSpice. In: 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, USA, pp. 391-394. ISBN 978-1-4673-7323-4 (https://doi.org/10.1109/IPMHVC.2014.7287292)

[thumbnail of Hogg-etal-IPMHVC-2014-Simulation-of-spark-dynamic-plasma-resistance-and-inductance]
Preview
Text. Filename: Hogg_etal_IPMHVC_2014_Simulation_of_spark_dynamic_plasma_resistance_and_inductance.pdf
Accepted Author Manuscript

Download (519kB)| Preview

Abstract

This paper presents the results of analyses of the transient resistance and inductance of spark plasma, parameters which have been obtained using the hydrodynamic approach described in [2], and a new model for plasma resistance. A lumped RLC model to represent the transient process in the spark-discharge plasma has been built and solved using PSpice simulation software. The dynamic plasma resistance, R(t), and inductance, L(t), have been used in the lumped-element circuit.