Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Identifying the time profile of everyday activities in the home using smart meter data

Wilson, Charlie and Stankovic, Lina and Stankovic, Vladimir and Liao, Jing and Coleman, Michael and Hauxwell-Baldwin, Richard and Kane, Tom and Firth, Steven and Hassan, Tarek (2015) Identifying the time profile of everyday activities in the home using smart meter data. In: Eceee Summer Study proceedings. ECEEE, pp. 933-946. ISBN 978-91-980482-6-1

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Activities are a descriptive term for the common ways households spend their time. Examples include cooking, doing laundry, or socialising. Smart meter data can be used to generate time profiles of activities that are meaningful to households’ own lived experience. Activities are therefore a lens through which energy feedback to households can be made salient and understandable. This paper demonstrates a multi-step methodology for inferring hourly time profiles of ten household activities using smart meter data, supplemented by individual appliance plug monitors and environmental sensors. First, household interviews, video ethnography, and technology surveys are used to identify appliances and devices in the home, and their roles in specific activities. Second, ‘ontologies’ are developed to map out the relationships between activities and technologies in the home. One or more technologies may indicate the occurrence of certain activities. Third, data from smart meters, plug monitors and sensor data are collected. Smart meter data measuring aggregate electricity use are disaggregated and processed together with the plug monitor and sensor data to identify when and for how long different activities are occurring. Sensor data are particularly useful for activities that are not always associated with an energy-using device. Fourth, the ontologies are applied to the disaggregated data to make inferences on hourly time profiles of ten everyday activities. These include washing, doing laundry, watching TV (reliably inferred), and cleaning, socialising, working (inferred with uncertainties). Fifth, activity time diaries and structured interviews are used to validate both the ontologies and the inferred activity time profiles. Two case study homes are used to illustrate the methodology using data collected as part of a UK trial of smart home technologies. The methodology is demonstrated to produce reliable time profiles of a range of domestic activities that are meaningful to households. The methodology also emphasises the value of integrating coded interview and video ethnography data into both the development of the activity inference process.