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Abstract
The FEL simulation code Puffin is modified to include 3D

magnetic undulator fields. Puffin, having previously used a

1D undulator field, is modified to accommodate general 3D

magnetic fields. Both plane and curved pole undulators have

been implemented. The electron motion for both agrees with

analytic predictions.

INTRODUCTION
Puffin [1] is an unaveraged 3D FEL code which does not

make the Slowly Varying Envelope Approximation (SVEA)

or period averaging in its analytical model. As such, it is

capable of modelling the a broad radiation field spectrum,

full longitudinal broadband electron beam transport through

the undulator, and Coherent Spontaneous Emission (CSE)

emerging from current gradients in the beam.

However, although Puffin models a 6D electron beam and

3D radiation field, it does not employ a 3D magnetic undu-

lator field. Instead, it implements a 1D undulator field with

no off-axis variation. Superimposed, is an external focusing

channel which is an approximation of the natural focusing

found in a helical undulator. This focusing channel may be

strengthened or weakened through the use of a ‘focusing

factor’ [2] to obtain a desired betatron frequency.

Such a model does not simulate the detuning of the reso-

nance condition in the transverse dimensions. Nor does it

allow the focusing to emerge naturally from the off-axis vari-

ation of the magnetic fields. The resulting electron motion

is an approximation in the case of a helical or curved-pole

undulator; it is inaccurate in the case of an undulator with

plane poles. Furthermore, the betatron motion as derived

in Puffin is only valid when the electron beam is close to

mono-energetic.

There is a need to model more realistic undulator fields;

in particular, plane pole and curved pole undulators are more

common than helical undulators for UV/X-ray FELs. There

is therefore a requirement that various 3D planar undulator

types be implemented in Puffin.

In the following, the Puffin model is first generalized to

include general undulator magnetic fields. This model also

allows a helical field description to be developed. Note

also that this general magnetic field description need not be

limited to undulators, and may allow future alternative appli-

cations of the Puffin code, to solve other radiation-electron

interactions in static magnetic fields.

This general description is then used to implement both a

generic plane pole and curved (canted) pole undulator FEL.

Results are presented to demonstrate the correct electron

motion and radiation characteristics are being solved.

MODIFIED MATHEMATICAL MODEL
The derivation of the FEL system of equations modelled

by Puffin is given in [1], using a magnetic undulator field

Bu =
Bu

2
(ueiku z + c.c.), where u = ux x̂ + iuy ŷ defines the

polarization of the undulator. Following the same derivation,

but using a general 3D magnetic field of the form B = Bx x̂+
By ŷ + Bz ẑ, one obtains the following system of equations:

[1
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where
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1 − β̄z
β̄z
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λr
λu
, (7)

p̄⊥ =
p⊥

mcau
, A⊥ =

euau lg

2
√
2γ2rmc2ρ

E⊥,
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1

γr
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, au =

eB0
mcku

,

α =
au
2ργr

, b⊥ = bx − iby , (8)
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and bx,y,z = Bx,y,z/B0 are the scaled magnetic fields in x, y
and z, respectively, and B0 is the peak on-axis magnetic field.
Other parameters remain as defined in [1]. The FEL param-

eter ρ above is defined using the peak undulator parameter,
rather than the r.m.s. undulator parameter.
Using the above system of equations, one may use bx ,by

and bz to define a static 3D magnetic field with which to sim-
ulate the energy exchange between a co-propagating electron

beam and radiation field. The model is still subject to the

same limitations as in [1], i.e. the paraxial approximation
and the neglect of the backwards propagating wave.

Currently, two 3D undulator fields have been implemented

in Puffin using this model, both derived from [3, 4]. The

first is an undulator field with canted, or curved, pole faces,

providing beam focusing in both transverse dimensions:

bx =
k̄x
k̄y
sinh(k̄x x̄) sinh(k̄y ȳ) sin( z̄/2ρ),

by = cosh(k̄x x̄) cosh(k̄y ȳ) sin( z̄/2ρ), (9)

bz =
√
η

2ρk̄x
cosh(k̄x x̄) sinh(k̄y ȳ) cos( z̄/2ρ),

where k̄x,y give the hyperbolic variation of the magnetic
field in x̄, ȳ, and must satisfy

k̄2x + k̄2y =
η

4ρ2
. (10)

The second undulator type is a planar undulator with plane

pole faces, described by:

bx =0,

by = cosh(
√
η ȳ/2ρ) sin( z̄/2ρ), (11)

bz = sinh(
√
η ȳ/2ρ) cos( z̄/2ρ).

SIMULATIONS
The electron transport through both of these undulator

types is well known. Some simple tests can therefore be

designed to see if the electron motion in Puffin exhibits the

correct behaviour.

As described in [3], a natural focusing channel arises from

the off-axis variation of the magnetic field in the curved-pole

undulator. From this so-called ’natural’ focusing, one ex-

pects a slow oscillation characterised by betatron wavenum-

bers and correspondingmatched beam radii in x̄ and ȳ, given,
in the scaled notation, as:

k̄βx =
au k̄x√
2ηγr

, k̄βy =
au k̄y√
2ηγr

, (12)

σ̄x =

√
ρε̄ x

k̄βx
, σ̄y =

√
ρε̄ y

k̄βy
. (13)

respectively.

For the curved pole simulation, ρ = 0.0017, au = 4.404,
ε̄ x,y = 1 and γr = 575.63. A small electron pulse is used
to generate a significant amount of coherent spontaneous
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Figure 1: The electron pulse radius σ̄x plotted as a function

of distance through the undulator.

emission (CSE) [5], to avoid a noisy transverse intensity dis-

tribution, allowing an simple check of the emitted radiation

properties.

The radii in x̄ and ȳ, matched at injection, are are seen to
be constant throughout propagation. σ̄x is plotted against

z̄ in Figure 1. In this case, k̄x = k̄y , which, from condition
(10) and equation (12), results in

k̄βx = k̄βy =
au
4ργr

, (14)

and, from (13), matched beam radii of σ̄x,y = 0.039, giving
good agreement with Figure 1.

Similar to the curved-pole undulator, a natural focusing

channel also arises in the plane-pole undulator, this time

exclusively in the ȳ direction. For this simulation, the pa-

rameters used are identical to the curved pole case, except

the beam energy and the undulator parameter are adjusted

to γr = 238.04 and au = 1.2876, to give the same betatron
wavelength and transverse radii for comparison to the curved

pole case.

The betatron period and matched beam radius in ȳ are

now:

k̄βy =
au

2
√
2ργr

, (15)

σ̄y =

√
ρε̄ y

k̄βy
, (16)

and electron motion in the (x̄, p̄x ) dimension should undergo

free space dispersion when averaged over an undulator pe-

riod, resulting in an expansion of the beam in the x̄ dimen-
sion.

The radius in x̄ during propagation is plotted in Figure 1,
showing the beam expansion. The initial radius in x̄ is here
set to the matched radius in ȳ, so σ̄x = σ̄y = 0.0327. The
radius in ȳ remains constant, as expected.

Another test which can be made on the electron motion

is that, again from [4], | p̄⊥|2 = 0.5 remains constant for all
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Figure 2: Transverse intensity profile of the 1st harmonic.
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Figure 3: Transverse intensity profile of the 2nd harmonic.

electrons when averaged over an undulator period, which

maintains a constant resonance condition throughout their

betatron oscillations. This condition is seen to be satisfied

in Puffin.

Puffin, being and unaveraged, non-SVEA code, is capable

of the self-consistent simulation of the full radiation field

spectrum in the FEL. The transverse intensity distributions

of the first 2 harmonics in the plane-pole case from CSE

is shown in Figures 2 and 3, showing the expected on-axis

emission for the first harmonic and the off-axis emission for

the second harmonic [6].

CONCLUSION
The system of equations (1 - 6) have been derived in

order to implement more realistic 3D undulators in Puffin,

increasing the scope of the code.

The betatron oscillation of each electron arises naturally

and self-consistently from the motion of the electrons in

the specified undulator fields - it is not an approximation of

the motion, which would only be valid for electrons close

to a given energy, super-imposed on top of another system

of equations. Consequently, the functionality reported here

will allow the simulation of broadband electron beams trans-

ported correctly through the FEL.

The work here may be combined with the model presented

in [7], which describes how to employ a taper in the equa-

tions, to taper an undulator module’s magnetic fields to and

from zero over the first and last few undulator periods in each

module. As well as more closely modelling a ‘realistic’ un-

dulator, this avoids the task of calculating the correct initial

conditions of the electron beam macroparticles that ensures

a stable propagation along the undulator. This calculation

can non-trivial, particularly for beams with a large energy

spread.

Other static magnetic fields, such as quadrupoles, may be

added to the equations. They would be subject to the same

scalings presented here, which are specific to the FEL - for

example, z is scaled to lg , the FEL gain length. It is intended
this will be done in the future.
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