Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


A peak capacitor current pulse-train controlled buck converter with fast transient response and a wide load range

Sha, Jin and Xu, Duo and Chen, Yiming and Xu, Jianping and Williams, Barry W. (2015) A peak capacitor current pulse-train controlled buck converter with fast transient response and a wide load range. IEEE Transactions on Industrial Electronics. ISSN 0278-0046

Text (Sha-etal-IE2015-current-pulse-train-controlled-buck-converter-with-fast-transient)
Sha_etal_IE2015_current_pulse_train_controlled_buck_converter_with_fast_transient.pdf - Accepted Author Manuscript

Download (1MB) | Preview


It is known that ripple-based control of a switching dc-dc converter benefits from a faster transient response than a conventional PWM control switching dc-dc converter. However, ripple-based control switching dc-dc converters may suffer from fast-scale oscillation. In order to achieve fast transient response and ensure stable operation of a switching dc-dc converter over a wide load range, based on a conventional pulse train control technique, a peak capacitor current pulse train (PCC-PT) control technique is proposed in this paper. With a buck converter as an example, the operating modes, steady-state performance and transient respond performance of a PCC-PT controlled buck converter are presented and assessed. To eliminate fast-scale oscillation, circuit and control parameter design consideration are given. An accurate discrete iteration model of a PCC-PT controlled buck converter is established, based on which, the effects of circuit parameters on stability of converter operating in a DCM mode, mixed DCM-CCM mode, and CCM mode are studied. Simulation and experimental results are presented to verify the analysis results.