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Abstract Due to recent advances in fast iterative solvers in the field of computational
fluid dynamics, more complex problems which were previously beyond the scope
of standard techniques can be tackled. In this paper, we describe one such situation,
namely, modelling the interaction of flow and molecular orientation in a complex
fluid such as a liquid crystal. Specifically, we consider a nematic liquid crystal in a
spatially inhomogeneous flow situation where the orientational order is described by a
second rank alignment tensor. The evolution is determined by two coupled equations:
a generalised Navier–Stokes equation for flow in which the divergence of the stress
tensor also depends on the alignment tensor and its time derivative, and a convection-
diffusion type equation with non-linear terms that stem from a Landau-Ginzburg-
DeGennes potential for the alignment. In this paper, we use a specific model with three
viscosity coefficients that allows the contribution of the orientation to the viscous stress
to be cast in the form of an orientation-dependent force. This effectively decouples
the flow and orientation, with each appearing only on the right-hand side of the other
equation. In this way, difficulties associated with solving the fully coupled problem are
circumvented and a stand-alone fast solver, such as the state-of-the-art preconditioned
iterative solver implemented here, can be used for the flowequation.A time-discretised
strategy for solving the flow-orientation problem is illustrated using the example of
Stokes flow in a lid-driven cavity.
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1 Introduction

In recent years, significant advances have been made in the development of effec-
tive preconditioned iterative solvers for finite element models in incompressible fluid
dynamics, such as solution of Stokes and Navier–Stokes equations [5]. The ready
availability of these methods in public domain codes such as IFISS [3] and TRILI-
NOS [10] has extended the range of possible applications by making it easier for the
practitioner to apply these fast solvers to specific situations. In particular, the MAT-
LAB package IFISS, as well as being a useful source of benchmark problems, also
provides a convenient starting point for developing solvers dedicated to a particular
application [4, §3.4]. In this paper, we describe one such situation where an IFISS-
based fast solver is used as part of an algorithm designed to compute flow in a liquid
crystal cell.

Computing flow in complex fluids such as liquid crystals and polymers is very
challenging because of the altered structure of the flow equation: the underlying
Navier–Stokes problem contains additional terms representing the interaction between
the flow and the orientation of the molecules within the fluid. In liquid crystal appli-
cations, the usual form of the stress tensor is very complicated. Our method relies
on reformulating the time derivative in the stress tensor in a way which effectively
decouples the flow and orientation, with each appearing only on the right-hand side of
the other equation. In this way, difficulties associated with solving the fully coupled
problem are circumvented and a stand-alone solver can be used for the flow equation.

Theflowof a nematic liquid crystal can be described in variousways.While themost
common approach uses the Ericksen–Leslie theory for the nematic director, a more
general description using the second rank alignment tensor is needed for problems
that involve defects. Different constitutive theories for the alignment tensor have been
derived [11,16–18,25,26] , and numerical solutions for some special cases have been
produced [6,7,28]. The creation of backflow and its influence on the annihilation of
defects in two space dimensions has been examined in [27,29]. In this example, the
reorientation of the alignment is the driving force. Also the impact of flow on the
orientation has received much attention. Possibly the earliest application was given by
Leslie: the flow alignment of the director in a simple shear [13]. The behaviour of the
alignment tensor under shear in a monodomain was also extensively studied in [8,19],
and other studies have considered lid-driven cavity flow [9,14,33].

Even in a homogeneous, simple shear flow,many different types of behaviour can be
found, such as flow aligning, tumbling, and chaos. Furthermore, to obtain a complete
picture, spatially inhomogeneous situations have to be considered. The evolution is
determined by two equations: the flow is governed by a generalised Navier–Stokes
equation, in which the divergence of the stress tensor also depends on the alignment
tensor and its time derivative, and the evolution of the orientation is governed by a
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convection-diffusion type equation that contains non-linear terms that stem from a
Landau-DeGennes potential [22].

In this paper we consider a specific model with three viscosity coefficients that
allows us to write the contribution of the orientation to the viscous stress in the
form of an orientation dependent force. As an example application, we consider the
standard fluid flow test problem of Stokes flow in a lid-driven cavity. We propose a
time-discretised strategy for solving the flow-orientation problem that involves two
alternating steps. First, for a given flow field, one time step for the orientation equa-
tion is carried out according to the methods described in [20]. Then, the flow field
of the Stokes flow is computed for the given orientation field. This is done using
state-of-the-art Krylov subspace and multigrid iteration techniques implemented in
IFISS [3].

2 General underlying equations

We consider a nematic liquid crystal whose orientational order is described by the
second rank alignment tensor Q. If u denotes a unit vector parallel to the symmetry
axis of an effectively uniaxial molecule, Q can be defined as the local average

Q := 〈 u ⊗ u 〉 =
〈
u ⊗ u − 1

3
I
〉

(2.1)

where I is the identity tensor and . . . denotes the symmetric traceless part of a tensor.
Equations of motion for incompressible flow and alignment can conveniently be

formulated in terms of a frame-independent invariant rate of the alignment tensor [23].
Here we use the co-rotational time derivative

◦
Q = Q̇ − 2WQ (2.2)

whereW = 1
2 (∇v−(∇v)T ) is the skew part of the velocity gradient, with v satisfying

the incompressibility constraint
∇ · v = 0, (2.3)

and Q̇ = ∂Q
∂t +(∇Q)v is the material time derivative ofQ. If the free energy connected

with the alignment is given as a functionW = W (Q,∇Q), the dissipation is specified

as a function R = R(
◦
Q,Q,D) that is a quadratic form in

◦
Q, and the symmetric part

of the velocity gradient is D = 1
2 (∇v + (∇v)T ), then the equations for flow and

alignment take the general form [22,25]

ρv̇ = divT

∂W

∂Q
− div

∂W

∂∇Q
+ ∂R

∂
◦
Q

= 0
(2.4)
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where the stress tensor T is given by

T = −p I − ∇Q � ∂W

∂∇Q
+ ∂R

∂D
+ Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q. (2.5)

This tensor contains an isotropic contribution from thehydrostatic pressure p, a viscous

stresswith symmetric part ∂R/∂D and skewpartQ ∂R/∂
◦
Q−∂R/∂

◦
Q Q, and an elastic

stress
(

∇Q � ∂W

∂∇Q

)
i j

:= Qkl,i
∂W

∂Qkl, j

which is analogous to the Ericksen elastic stress in a director based description.

3 Specific model

To obtain a specific model, we choose the free energy to be of the form

W = φ + 1

2
L1‖∇Q‖2, (3.1)

where φ = 1
2 A(T ) trQ2 −

√
6
3 B trQ3 + 1

4C(trQ2)2 is a Landau-deGennes potential,
and a curvature elastic energy with one elastic constant L1 is used. Although other
models involving additional elastic constants exist (see, for example, [2]), we choose
this commonly-used one-constant approximation for simplicity in the equations below.
For an alignment tensor theory to be consistentwithEricksen–Leslie theory (in the case
of uniaxial alignment with constant scalar order parameter), the dissipation function
R needs to contain at least five terms. The choice

R = 1

2
ζ1

◦
Q · ◦

Q + ζ2D · ◦
Q + 1

2
ζ3D · D + 1

2
ζ31D · (DQ) + 1

2
ζ32(D · Q)2 (3.2)

with five phenomenological viscosity coefficients ζ1, ζ2, ζ3, ζ31, and ζ32 leads to the
stress tensor proposed in [18]. Although more general forms for R are available (see
[24], [25, eq. (4.23)]), omitting terms other than those in (3.2) simply amounts to
neglecting higher-order corrections to the Ericksen–Leslie viscosity coefficients, so
we retain the simpler form here. Using (3.1) and (3.2) in (2.4) yields the equation for
the alignment

ζ1
◦
Q = −� − ζ2D + L1�Q,

where � is the derivative ∂φ/∂Q of the Landau-deGennes potential φ. The different
contributions to the stress tensor (2.5) then take the following explicit forms: the
skew-symmetric part is

Tskew = ζ1(Q
◦
Q − ◦

QQ) + ζ2(QD − DQ) (3.3)
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and the symmetric traceless part of the viscous stress is

T(v) = ζ2
◦
Q + ζ3D + ζ31DQ + ζ32(Q · D)Q. (3.4)

In the one elastic constant approximation used here in (3.1), the elastic contribution
to the stress is symmetric and given by

T(e) = −L1 ∇Q � ∇Q. (3.5)

4 Solution strategy

We begin by writing the stress tensor in a more convenient form, namely, we remove
its explicit dependence on the time derivative of the alignment tensor. To this end, we
observe that on a solution

◦
Q = 1

ζ1
(−� − ζ2D + L1�Q) . (4.1)

Using this in expression (3.3) for the skew part of the viscous stress, we find that

Tskew = ζ1(Q
◦
Q − ◦

QQ) + ζ2(QD − DQ)

= �Q − Q� + L1[Q(�Q) − (�Q)Q]
= L1[Q(�Q) − (�Q)Q], (4.2)

where the last equality holds because � is simply a polynomial in Q and hence
commutes with Q. Applying the same procedure to the symmetric part of the viscous
stress yields

T(v) = ζ2

ζ1
(L1�Q − �) + ζ4D + ζ31DQ + ζ32(Q · D)Q (4.3)

where we have introduced a renormalised isotropic viscosity ζ4 according to ζ4 :=
ζ3 − ζ 2

2 /ζ1.
From now on, we will neglect the last two terms in (4.3), that is, we will assume

that ζ31 = ζ32 = 0. In terms of the Leslie viscosities, this amounts to making the
assumptions α1 = 0 and α5 = −α6, see [22]. We note that while these assumptions
are reasonable for small molecule liquid crystals, they will have to be modified for
polymeric liquid crystals (see Sect. 7). The advantage of making these assumptions is
that with ζ31 = ζ32 = 0, the divergence of the stress tensor takes a very convenient
form, namely,

divT = −∇ p + 1

2
ζ4�v + divF (4.4)

with

F = L1

(
Q(�Q) − (�Q)Q + ζ2

ζ1
�Q − ∇Q � ∇Q

)
− ζ2

ζ1
�. (4.5)
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We non-dimensionalise by expressing all lengths in terms of the nematic coher-
ence length ξ = √

9CL1/(2B2) and all times in terms of the relaxation time
τ1 = 9Cζ1/(2B2). In addition, we rescale the alignment tensor according to Q̃ =
3C/(2B)Q. This leads to the dimensionless Landau-deGennes potential

�̃ = (ϑ + 2 tr Q̃2)Q̃ + 3
√
6 Q̃Q̃ , (4.6)

where ϑ = 9C/(2B2) A(T ) is a dimensionless temperature parameter. In these units,
the clearing point Tc and the pseudo critical temperature T ∗ correspond to ϑ = 1
and ϑ = 0, respectively [12]. Note that, for convenience, the tildes are dropped in all
subsequent formulae.

The final dimensionless equations then are

◦
Q = �Q − � − TuD (4.7)

for the orientation and

ρv̇ = −∇ p + �v + divF (4.8)

with

F = Bf

{
1

Tu
[Q(�Q) − (�Q)Q − ∇Q � ∇Q] + �Q − �

}
(4.9)

for the flow, together with the incompressibility constraint (2.3). Note that here
we have introduced two dimensionless parameters: the backflow parameter, Bf =
4Bζ2/(3Cζ4), measures the impact of the orientation on the flow, and the tumbling
parameter, Tu = 3Cζ2/(2Bζ1), measures the relative strength of the viscosities ζ2
and ζ1. In a simple shear one can expect flow alignment for Tu > 1, where the liquid
crystal aligns at an angle of cos 2φa = −1/Tu to the direction of the flow gradient [13].
For values of Tu < 1 some dynamic state such as tumbling should prevail.

5 Implementation and solver details

In what follows, we will assume flow at a low Reynolds number, that is, we assume
that flow inertia can be neglected so v̇ = 0. Equation (4.8) is then simply a Stokes
equation with a force equal to the divergence of the tensor F in (4.9) that depends only
onQ and its spatial derivatives. This suggests the following iterative solution strategy:

Coupled flow-orientation algorithm

1. Calculate an initial orientation field Q.
2. Solve the Stokes equation (4.8) and incompressibility constraint

(2.3) with divF as a force [for F in (4.9)].
3. Use the obtained flow field v to compute one time step in a

discretised version of the orientation equation (4.7).
4. With the new orientation field Q, go back to step 2.

Note that, within this framework, any two stand-alone solvers (one for the orientation
equations and one for the Stokes equation) can be used. That is, the algorithm structure
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is independent of the discretisation methods used within each solver, and specific
details of the underlying flow and orientation problems (such as shape of the domain
and boundary conditions). Furthermore, changing the form of the elastic energy in
(3.1) would change only the right-hand side of the flow problem (through F) and
would not affect the Stokes iteration matrix (see below).

For the orientation solver, we note that a symmetric, traceless second-rank tensor
has five independent degrees of freedom. Once Q is expressed in terms of a suitable
basis [20,21], the orientation equation (4.7) takes the form of five coupled non-linear
partial differential equations. In the numerical experiments which follow, these were
discretised in space using finite differences on a uniform grid and in time using an
explicit Euler method. Although stability considerations mean that the size of time-
step which can be used is limited with an explicit method, that is not a concern here as
small time-steps are already needed for accuracy in terms of modelling flow evolution.
Also, the complexity and computational expense of implementing amatrix-based non-
linear iterative solver for the system of five coupled equations in (4.7) makes a fully
implicit approach impractical.

As highlighted in the introduction, the Stokes equation (4.8) was solved at each
time-step using a finite element based iterative solver adapted from the public domain
MATLAB package IFISS [3,4]. The particular finite element discretisation used was
a Q2−Q1 Taylor-Hood mixed approximation (that is, quadratic elements for velocity
and linear elements for pressure). The resulting linear equations take the form of a
saddle point system [

A BT

B 0

] [
u
p

]
=

[
f
g

]
≡ Aū = f̄ (5.1)

for the vectors of velocity and pressure unknowns, u and p respectively (see, for
example, [5, §3.3] for more details). Here (5.1) was solved using one of the state-of-
the-art preconditioned MINRES solvers from IFISS. Specifically, a block diagonal
preconditioner of the form

M =
[
P 0
0 S

]
(5.2)

was used (with preconditioned coefficient matrix equivalent to M−1A). With this
form of preconditioner, choosing P = A and S = BA−1BT (the so-called Schur
complement of the saddle-point problem) results in aMINRES solver which converges
in three iterations [15]. This is clearly not practical for realistic problems, because it
involves explicitly inverting A and the Schur complement several times. However, it
suggests that choosing P and S to be approximations to A and the Schur complement
which are cheap to invert will result in an effective preconditioner M.

For P , any good preconditioner for the Laplacian A can be used. For the Schur
complement approximation, we use S = MP , where MP is the finite element mass
matrix corresponding to the pressure, which is spectrally equivalent to the Schur
complement. Note that, although we invert MP explicitly in the experiments below,
if necessary the action of M−1

P can be effectively approximated using a small number
of steps of Chebyshev iteration (see [5, Remark 4.5], [31]).

In the numerical experiments of §6, we show results obtained using three different
preconditioners of the form (5.2):
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– Diagonal preconditioning (DP): P = diag(A), S = diag(MP ). This basic
preconditioner should offer a modest reduction in iteration counts but is clearly
very cheap to invert.

– Ideal preconditioning (IP): P = A, S = MP . This represents the best possible
preconditioner of this form, as A is inverted exactly. It can be shown that the
eigenvalues of M−1A lie in small intervals that are uniformly bounded away
from ±∞ and the origin, meaning that MINRES will converge rapidly and in a
number of iterations which is independent of the discrete problem size [30].

– MG preconditioning (MGP): P = mg(A), S = MP . Here we apply geometric
multigrid (denoted by mg) to the Laplacian component. This involves one V-
cycle with two directional sweeps (left→right, bottom→ top) of line Gauss-Seidel
iteration as smoother (see, for example, [32]).

Having access to good flow solvers is a key ingredient of our approach, as efficient
solution of system (5.1) is critical to the overall practicality of the coupled flow-
orientation algorithm.

6 Numerical experiments

To illustrate how the coupled flow-orientation algorithm in §5 can be applied in prac-
tice, in this sectionwepresent the results of somenumerical experiments on a lid-driven
cavity problem [1]. The lid-driven cavity is a classic test problem in fluid dynamics
where flow in a square cavity is driven by the lid moving from left to right, see Fig. 1.
The flow boundary conditions are of Dirichlet type everywhere, with the velocity fixed
at some positive rate in the x-direction on the lid and zero along all other cavity walls.
Here we use a ‘watertight’ cavity, that is, the velocity is fixed to be zero at the top
corner points on both left and right boundaries. The resulting discontinuous horizontal
velocity generates a strong singularity in the pressure solution, but away from these
corners the pressure is essentially constant.

Fig. 1 Specification of
lid-driven cavity problem
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Fig. 2 In-plane orientation. The initial homogeneous orientation with fixed boundary conditions is shown
on the left. The non-homogeneous alignment field caused by the moving lid (on the right) shows regions
of flow alignment in the lower part of the cavity and a periodic tumbling alignment close to the lid. There,
the scalar order parameter is reduced significantly, as is visible from the smaller size of the boxes

Dirichlet boundary conditions are also used for the alignment tensor. The same
uniaxial alignmentwith equilibriumorder parameter is prescribed at all boundaries and
also as an initial condition in the bulk. In this way, without driving flow a homogeneous
uniaxial orientation, as given by the initial condition (see the left of Fig. 2), would
result. As mentioned above, alternative problem domains and boundary conditions
could be implemented directly in the flow and orientation solvers.

6.1 In-plane orientation

For a pure in-plane evolution, we used lid velocity v = 10 and cavity length L = 8.
This corresponds to a Reynolds number of Re = V Lρ/ζ4 ≈ 10−5 for a typical
small-molecule liquid crystal. The Ericksen number is then Er = ζ1V L/L1 ≈ 80,
and we chose Bf = 2/3 and Tu = 1/5. The temperature was chosen as ϑ = 0,
corresponding to the pseudo-critical temperature T ∗. The time-step used in the explicit
Euler method (for the orientation equations) was �t = 0.0001. This ensures stability
of the method for the range of spatial discretisation parameters used (from h = 1/16
to h = 1/256 for the experiments reported on below). For orientation boundary
conditions, we used homeotropic anchoring on the top and bottom of the cavity and
planar anchoring on the lateral sides. The initial orientation is shown on the left of
Fig. 2. The boxes shown lie parallel to the eigensystem of the alignment tensor, and the
lengths of the edges correspond to the respective eigenvalues, see [20]. The shading of
the box shows its degree of biaxiality: a white box corresponds to uniaxial alignment,
where two eigenvalues are equal (such as in the initial configuration), and a black box
corresponds to perfectly biaxial alignment, where one eigenvalue is zero. In general,
the level of darkness of a particular box is proportional to the biaxiality measure
β2 = 1 − 6(trQ3)2/(trQ2)3 used in [12]. Note that the number of boxes plotted has
been chosen for clear representation of the solutions, and does not correspond to the
number of degrees of freedom used in the calculations.
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Fig. 3 Flow field during the evolution. The left picture shows the streamlines of the flow field for the initial
homogeneous configuration: they are symmetric with respect to a vertical axis through the centre of the
cavity. The picture in the middle shows the streamlines at a later time, which are no longer symmetric but,
due to the changes in the orientation field, are shifted slightly to the right. The right picture shows a contour
plot of the difference between the two flow fields

The right picture in Fig. 2 shows a snapshot of the alignment field after the flow
has developed. The evolution displayed shows two distinct types of orientation. On
the one hand, in the lower part of the cavity, the orientation is dominated by the
elastic forces and a stationary state of aligned flow is found. On the other hand,
close to the lid where the velocity gradient is large, a periodic solution of in-plane
tumbling orientation is found. Furthermore, because of the fixed boundary conditions,
the orientation necessarily shows defects. In the alignment tensor description, these
defects are characterised by a planar uniaxial orientation. They are generated close to
the upper right corner of the lid and travel towards the centre of the cavity and from
there to the upper left corner.

For the given choice of the parameters, the flow field is only slightly affected by
the orientation (see Fig. 3). Initially, with a homogeneous orientation, the stream lines
are symmetric about a vertical axis through the centre of the cavity. This reflects the
time-reversal symmetry of the Stokes equation. When the orientation is no longer
homogeneous, however, this symmetry is broken and the streamlines shift to the right.
This is an effect similar to that found in isotropic fluids at high Reynolds numbers. It
is found here in a linear flow equation because of the influence of the orientation on
the flow.

To illustrate the efficiency of the flow solver, in Table 1 we present a summary of
the performance of the three preconditioners discussed in §5 (as compared to results
with unpreconditioned MINRES, which are in the column labelled ’none’).

For each method, two quantities are tabulated: k is the average number of MIN-
RES iterations required at each time-step to compute the flow field (with convergence
tolerance 0.0001), and s is the amount of time associated with this computation (in
seconds, as calculated using the MATLAB commands tic and toc). In both cases,
the results have been averaged over the first 200 time-steps, as this initial phase poses
the greatest challenge for the flow solver. As expected, the number of MINRES itera-
tions required with no preconditioning grows with the problem size. Although using
diagonal preconditioning (DP) reduces the iteration count slightly, it can be seen by
comparing the values of s that the expense involved in constructing the preconditioner
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Table 1 A comparison of iteration counts and times for various preconditioners averaged over the first 200
time-steps

h None DP IP MGP

k s k s k s k s

1/16 46.6 4.61e−3 15.4 3.49e−3 4.0 1.11e−2 6.1 8.50e−3

1/32 97.8 1.80e−2 33.9 1.16e−2 5.8 6.10e−2 7.2 1.43e−2

1/64 141.1 8.85e−2 60.5 5.50e−2 5.4 2.42e−1 6.9 3.28e−2

1/128 176.2 4.69e−1 101.0 3.68e−1 4.7 1.18e+0 5.6 9.37e−2

1/256 219.8 1.87e+0 161.9 2.08e+0 3.4 4.17e+0 4.2 2.70e−1

outweighs its benefits as h decreases. For ideal preconditioning, we see that k is, as
predicted by the theory in [30], essentially independent of the discretisation parameter
h, although the cost of explicitly inverting A grows rapidly. When this inversion is
avoided by replacing the action of A−1 by using one multigrid V-cycle based on A,
as in MGP, there is a slight growth in the number of iterations needed but, crucially,
the method is still essentially grid-independent, and at a much reduced cost. In this
framework, MGP is clearly extremely efficient, as is necessary for the overall coupled
flow-orientation algorithm to be practical.

6.2 Out-of-plane orientation

Toobtain anout-of-plane evolution, both the boundary and initial conditionswere tilted
by an angle of 15◦ out of the shear plane. The initial orientation is again homogeneous;
with respect to the in-plane orientation on the left of Fig. 2, the top of the alignment
tensor is simply tilted by 15◦ out of the plane towards the observer. Here we used
v = 15 and L = 16, which corresponds to a Reynolds number of 3 × 10−5 and an
Ericksen number of 240. As before, Bf = 2/3 and ϑ = 0, but this time we chose
Tu = 4/5 to facilitate the occurrence of out-of-plane periodic solutions (see, for
example, the phase diagrams for monodomains in [8]). The time-step used for the
orientation solver was �t = 0.0001 as before.

The resulting evolution (as illustrated by the snapshot on the left of Fig. 4) again
shows in the lower part of the cavity a region of flow alignment that here is out of the
plane. Close to the lid, periodic kayaking is found. A close-up view as seen from the
top right of the cavity is shown on the right of Fig. 4, where this periodic out-of-plane
behaviour is clearly visible. This is again accompanied by the creation of defects
in the upper right corner and their annihilation in the upper left corner. A notable
difference from the in-plane evolution, however, is that the reduction of the scalar
order parameter is far less pronounced. Here, it takes place mostly around the defects:
the orientation can go out of the plane to avoid the frustration induced by the flow
gradient.

When the orientation has components that lie out of the plane, the force density divF
that is due to the orientation-related contributions to the stress can have a component
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Fig. 4 Out-of-plane orientation. On the left, in the lower part of the cavity the orientation is again one
of flow alignment, but here it is out of the plane. Close to the lid, periodic kayaking is found and, as in
the in-plane case, defects are created in the upper right corner and eventually annihilate in the upper left
corner. The reduction of order is considerably less pronounced than for the in-plane case. A close-up view
as seen from the top right of the cavity is shown on the right
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Fig. 5 Component of the force divF perpendicular to the shear plane. This force component is particularly
large at the corners where the pressure is divergent (left) but it is present throughout the cavity, as evidenced
by the close-up of the central region (right)

that lies out of the plane even when both flow field and orientation field are assumed
to be homogeneous in that direction. This out-of-plane component of divF is shown
in Fig. 5. It is most noticeable at the corners where the pressure is divergent, but it
is present throughout the cavity. This shows that, for out-of-plane evolutions, truly
three-dimensional flow fields will arise and that two-dimensional computations are
therefore only of limited value in this context.

The relative performance of the various preconditioned Stokes solvers discussed in
§5 is very similar to that for the in plane orientation example of §6.1, so iteration counts
and timings have not been displayed here. TheMGP preconditioner again significantly
outperformed the other methods.

123



Computational fluid dynamics for nematic liquid crystals

7 Conclusions

In this paper we have described a highly efficient algorithm for the computation of
flow and orientation in nematic liquid crystals. Writing the influence of the orientation
field on the flow in the form of a force density allows us to solve the flow equation
by using well established fast solvers. This aspect of the modelling dominates the
computational time required, so that the overhead added to the computational fluid
dynamics by the anisotropic liquid is rather small.We note that, although here we have
focussed on the use of a fast solver from the IFISS package, other existing software
could also be used.

One disadvantage of the method that we have presented is that only three viscosity
coefficients enter the viscous stress. However, when the co-rotational time derivative
that we have used here is replaced by a general co-deformational time derivative

�
Q = Q̇ − 2WQ − 2σ DQ ,

the same numerical procedure as before can be employed. As long as only the terms
proportional to ζ1, ζ2, and ζ3 are considered in the dissipation function, the influence
of the orientation on the flow still takes the form of a force density This makes the
type of algorithm presented in this paper suitable for a more general class of materials,
such as polymeric liquid crystals.

Generalisation to high Reynolds numbers is also straightforward: it requires the
retention of the inertial term ρv̇ on the left hand side of (4.8) and solution of the
resulting Navier–Stokes equation with a specified force term. At each time-step, the
latter leads to a saddle-point system of a form similar to (5.1) but with the diffusion
component replaced by a discrete convection-diffusion operator. Such systems could
be solved efficiently using advanced preconditioned iterative techniques for finite
element Navier–Stokes approximations, such as the pressure convection-diffusion and
least-squares commutator preconditioners described in [5] and implemented in IFISS.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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