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For the first time evidence is provided that one-dimensional objects formed by the accumulation of

tracer particles can emerge in flows of thermogravitational nature (in the region of the space of

parameters, in which the so-called OS (oscillatory solution) flow of the Busse balloon represents

the dominant secondary mode of convection). Such structures appear as seemingly rigid filaments,

rotating without changing their shape. The most interesting (heretofore unseen) feature of such a

class of physical attractors is their variety. Indeed, distinct shapes are found for a fixed value of the

Rayleigh number depending on parameters accounting for particle inertia and viscous drag. The

fascinating “sea” of existing potential paths, their multiplicity and tortuosity are explained according

to the granularity of the loci in the physical space where conditions for phase locking between the

traveling thermofluid-dynamic disturbance and the “turnover time” of particles in the basic toroidal

flow are satisfied. It is shown, in particular, how the observed wealth of geometric objects and related

topological features can be linked to a general overarching attractor representing an intrinsic

(particle-independent) property of the base velocity field. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4773001]

Although three-dimensional (3D) time-dependent Ray-

leigh-B�enard (RB) convection has been the subject of a

large amount of research, the associated problem related

to the spontaneous accumulation (clustering) of solid par-

ticles dispersed in the fluid phase has not been similarly

graced. Here this topic is investigated by direct numerical

solution of the governing flow-field (Navier-Stokes-Bous-

sinesq) equations in combination with a specific particle-

tracking method accounting for particle motion under

the influence of inertia and viscous drag. Attention is con-

centrated on a traveling-wave solution, which of RB con-

vection represents a canonical state. It is shown that, if

specific conditions are satisfied, particles, initially uni-

formly spaced in the liquid, are allowed to demix and

form “apparently solid threads,” which rotate at an

angular velocity equal to the angular frequency of the

thermofluid-dynamic disturbance. The fascinating diver-

sity and complexity of resulting shapes (changing accord-

ing to inertial properties of particles) distinguish the

present case from similar phenomena observed previ-

ously for Marangoni (thermocapillary) flow in systems

with liquid/gas interfaces. The observed dynamics are

explained in the framework of a theory that has its root

in a long tradition of past studies devoted to phenomena

of inertial particle clustering. This model does not

require the presence of a free/liquid gas interface or

other intrinsic features of Marangoni convection and is

therefore applicable to a vast range of problems and

situations.

I. INTRODUCTION

The evolution of a dynamical system can be described

in general by means of a phase trajectory, which is a curve

traced in the phase space having as many dimensions as the

number of degrees of freedom of the system.1 One of the

many characteristics of all dissipative systems (systems for

which, evolution is driven by competition between a driving

force and dissipation of energy) is that their phase trajecto-

ries are attracted by a geometric object called “attractor.”

This means that different trajectories, arising from different

points of the attractor, end on the attractor anyway.

In such a context, much attention has been attracted by

Rayleigh-B�enard (RB) convection, which, for the past cen-

tury, has been the subject of very intensive theoretical, ex-

perimental, and numerical studies. Analysis of this kind of

flow is of practical importance for many engineering applica-

tions and natural phenomena. Even so, the main interest to

researchers for this problem is of a theoretical nature as wit-

nessed by the amount of excellent studies appearing in the

literature in which Rayleigh-B�enard convection has been

used as a paradigm for the study of pattern formation.2–4

The identification of a “zoo” of possible attractors for

this kind of convection is due, in particular, to the landmark

research work of Busse,5,6 who, focusing on the secondary

instabilities which can affect an initial state represented by

parallel rolls, determined the boundaries of the region in the

space of wavenumber and control parameter where these

parallel rolls are stable. It is this line of study that led to the

identification of the so-called bimodal, knot and oscillatory

(OS) convection (and a variety of other possible spatiotem-

poral modes appearing in specific regions of the space of pa-

rameters, e.g., skewed varicose, cross-roll, ziz-zag, Eckhaus,

oscillatory blob convection, etc., for a review see Ref. 7).

Other interesting structures are known to be produced in the

turbulent state of RB convection by the evolution and clus-

tering in space of thermal plumes originating from instabil-

ities of the wall boundary layers, see, e.g., the excellent
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investigations by Refs. 8–10 (the reader is also referred to

Ref. 11 and all references therein).

Despite the impressive amount of knowledge developed

over the years on this subject, the related study of the cluster-
ing dynamics of solid particles suspended in such a kind of
flow, however, seems to be rather limited; indeed, there are

no specific results in the literature on the existence and prop-

erties of regions behaving as “attractive” loci of points for

solid particles in RB flow. This is really surprising if one

considers that the general topic related to the ordering and

transport of small particles in incompressible flows is of re-

markable importance (as well as of general and current inter-

est), as witnessed by important analyses that have been

devoted recently to these phenomena (Refs. 12–19). Interest-

ingly, most of these authors were concerned with the direct

numerical simulation of homogeneous isotropic turbulence

to investigate its interplay with the transport of particles in

gases or bubbles in liquids. It was realized that the inertia
associated with such bubbles or particles can produce prefer-

ential concentration of these in regions of instantaneously

strong vorticity (for bubbles) or strain-rate (for particles),

altering, among other things, the average settling rates and

other processes.

Most recently, a parallel line of research has led to the

identification of a special class of solid particle attractors in

the specific case of Marangoni (thermocapillary) convection

(flows that occur if a temperature gradient is imposed along a

free liquid/liquid or liquid/gas interface) and for slightly

supercritical values of the Marangoni number (“supercritical”

here refers to the well-known instability of Marangoni flow

that determines transition from an initial axisymmetric steady

state to a threedimensional time-dependent condition charac-

terized by the azimuthal propagation of disturbances, gener-

ally known as hydrothermal waves).

The distinguishing feature of this new category of attrac-

tors with respect to other incompressible flows is the strictly

“one-dimensional nature” (1D) of the structures formed by

particle accumulation (despite their peculiar nature, these phe-

nomena are generally simply referred to with the acronym

“PAS,” which stands for particle accumulation structures20–24).

This has opened the problem to discern whether the

related dynamics can be still explained in the framework of

inertial models, like those used to justify the preferential

concentration of particles, drops or bubbles in turbulent

flows (although not in strictly 1D structures), as discussed

above, or other specific non-inertial models (like that elabo-

rated by Ref. 25) have to be necessarily invoked.

Along these lines, the main motivation of the present

work is to show that such one-dimensional paths attracting

particles in the physical space are neither an exclusive pre-

rogative of Marangoni convection nor an exclusive feature

of systems with a free liquid/gas interface, their emergence

being possible also in the case of natural flows of gravita-

tional nature (provided specific conditions are established/

satisfied).

The problem is investigated resorting to direct numerical

solution (DNS) of the Navier-Stokes-Boussinesq equations

coupled with solution of the Maxey-Riley equation26 in its

simplest form (the so-called inertial equation, derived in the

literature27 as an explicit dissipative equation describing the

flow on the slow manifold that governs the asymptotic

behavior of inertial particles).

Starting from the cardinal concepts of “inertial seg-

regation”28 and particle spontaneous self-assembly due to “phase

locking,”29 in particular, a more spatial approach, an application

of what is generally regarded as the “vorticity-based

perspective” in fluid dynamics, is used here to explain the cause-

effect relationships at the basis of the considered phenomena.

II. MATHEMATICAL MODEL AND METHOD OF
ANALYSIS

A. The geometry

Since formation of PAS in Marangoni flow has been

observed solely in liquid bridges and when the hydrothermal

disturbance travels along a preferred direction (the so-called

rotating regime, see Ref. 30), starting point of our analysis is

represented by analysis of the RB problem a geometry with

the same kind of (axial) symmetry (Figure 1).

Moreover, circumstances are considered for which, on

the basis of the Busse balloon, the expected secondary mode

of Rayleigh-B�enard convection corresponds to the aforemen-

tioned (OS) Oscillatory Instability (unlike other modes of the

Busse balloon, this instability does not destroy the underly-

ing roll structure and does not create defects; it simply adds

a wave that propagates along the rolls31–33).

Accordingly, we focus on the following case: an annu-

lus with internal and external radii a¼L and b¼ 5L (L being

the axial extension of the system) delimited by solid hori-

zontal and vertical walls (bottom heated, top cooled and, ad-

iabatic conditions on the two remaining walls). The

considered values of the Prandtl and Rayleigh numbers are

Pr¼ 1 and Ra¼ 3.5� 104, respectively (Pr¼ �/a, Ra defined

as gbTDTL3/�a where g is the gravity acceleration, bT the

thermal expansion coefficient, DT the imposed temperature

gradient, � and a the kinematic viscosity and thermal diffu-

sivity, respectively).

B. Nondimensional field equations

The Navier-Stokes-Boussinesq equations are considered in

the nondimensional form obtained by scaling the cylindrical co-

ordinates (�r; �z) by L and the velocity components in the axial,

radial, and azimuthal directions ( �Vz; �Vr; �Vu) by the energy dif-

fusion velocity Va¼ a/L [the scales for time (t), pressure (p),

FIG. 1. The annular domain, a region having cylindrical symmetry with a

cooled top wall, a heated bottom boundary, an inner adiabatic wall (radius

a), an outer adiabatic wall (radius b), and depth L.
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and temperature (T) being, respectively, L2/a, qa2/L2 and

DT, where q is the fluid density]. These equations read

r � V ¼ 0; (1)

@V

@t
¼ �rp�r � ½VV� þ Prr2V � Pr RaTig; (2)

@T

@t
þr � ½VT� ¼ r2T; (3)

where ig is the unit vector along the direction of gravity

(ig ¼ �iz).

C. Boundary conditions

The kinematic conditions to be imposed on the walls

simply reflect the well-known no-slip and impermeability

properties of solid boundaries (Vz¼Vr¼Vu¼ 0). We do not

report them here explicitly for the sake of brevity (and given

their extreme simplicity). For problem closure, such condi-

tions, however, have to be supplemented with those for the

energy equation. Like usual studies on the subject, the lower

(z¼ 0) and upper (z¼ 1) walls of the domain are assumed

here to be at uniform and constant (nondimensional) temper-

atures T0¼ 1 and T1¼ 0 respectively, while the vertical walls

are adiabatic, i.e., the @T/@r¼ 0 condition is imposed there.

D. Particle tracking equation

As mentioned in the Introduction, it is a well-known fact

(it has been observed both experimentally, and numerically,

resorting to the so-called Maxey-Riley equation26) that the dy-

namics of finite-size particles can differ markedly from infini-

tesimal particle dynamics. For many applications, however,

the complete Maxey-Riley equation is too complex and broad

in scope. Rather, obtaining a robust understanding requires a

diversity of model types, ranging from simple to complex, in

which various processes can be turned on and off and the

results carefully diagnosed (this is called a modeling hierarchy

and its use forms the backbone of forward progress in any

field). Along these lines, a reduction of the equation for parti-

cle motion can be considered instrumental in characterizing

unambiguously those underlying salient ingredients in the pro-

cess leading to PAS formation, which are expected to be deci-

sive for other systems/circumstances too.

Since a commonly used modus operandi (with a long tra-

dition of past studies on the subject of inertial segregation) is

to collapse the particle-motion equation on the slow manifold

that governs the asymptotic behavior of inertial particles in

the frame of reference rotating at the same angular frequency

of the thermofluid-dynamic disturbance,28,29 here we under-

take the same approach. Accordingly, the particle-tracking

equation is cast in compact (nondimensional) form as:

Vpart ¼ V � g
DV

Dt
� cig

� �
þ OðSt2Þ; (4)

where Vpart is the particle velocity, V is the fluid velocity,

g ¼ sa
L2 ðn� 1Þ, n is the ratio of the particle to the fluid den-

sity (assumed to be 1.5), s is the so-called relaxation time,

related to the solid particle radius ~R by the expression

s ¼ 2
9

~R
2

� , and the Stokes number St is defined as

St ¼ 2
9

~R
L

� �2
UL
� , U being the characteristic flow speed (St� 1

for the conditions considered here). Moreover, c ¼ gL3

a2 is the

term accounting for gravity.

This equation, which can be considered valid when both

conditions ~R/L� 1 and U ~R/�� 1 are satisfied, describes the

dynamics of small particles dominated by the inertia (including

the so-called added mass effect) and viscous drag forces. The

centrifugal force, however, is neglected (under the assumption

that X2b/g� 1, where X is the characteristic particle angular

velocity). Moreover, in line with earlier studies,25,29 particles

are assumed to be independent of each other (hence neglecting

any possible mutual interference) and passive with respect to

the flow (this is the so-called one-way coupling assumption,

i.e., no back influence of particles on flow is considered).

E. Solution method and validation study

Balance equations (1)–(3) have been solved numerically

in primitive variables by a time-explicit finite-difference

method (SMAC method), the domain being discretized with

a cylindrical mesh and the flow field variables defined over a

staggered grid. Forward differences in time and central-

differencing schemes in space (second order accurate) have

been used to discretize the energy and momentum partial dif-

ferential equations. The related algorithm is no longer dis-

cussed here. The interested reader is referred for additional

details to various books and articles in the literature (for the

implementation of this method on parallel machines, the

reader may consider, e.g., Refs. 34 and 35).

The present code was successfully used for numerous

studies of Marangoni flows and repeatedly validated also by

comparison with other kinds of convection (of various

natures, see, e.g., Ref. 7).

The above statement, however, does not apply to the

part concerning the computation of PAS, for which separate/

additional validation has been deemed necessary and for

which additional details have to be provided about the spe-

cific solution strategy employed.

Towards this end, we may start from the observation

that the flow field required at an arbitrary point of the volume

(occupied by the generic moving particle) has been linearly

interpolated on the computational grid (i.e., linear interpola-

tion of the velocity field has been used for obtaining V and

the related substantial derivative at the particles’ locations).

PAS simulation on the basis of such approach has been

then validated by comparison with the numerical results of

Melnikov et al.,36 who considered Marangoni flow in a liq-

uid bridge with aspect ratio (height/diameter)¼ 0.34, Pr¼ 8

(NaNO3), Ma¼ 20 600 (where Ma is defined as rTDTL/la
where DT is the applied temperature gradient, l the dynamic

viscosity, and rT the surface tension derivative).

Results of the validation study are shown in Table I.

Particles (4� 103) were seeded into the computational

domain initially collected into two perpendicular planes and

assumed to be motionless. Fig. 2(a) shows their final location
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in space with the emergence of the well-known pattern

resulting from the accumulation and ordering dynamics.

The value of g considered for this simulation was

g¼ 1� 10�5, which corresponds to particles with size 45 lm

and solid/fluid density ratio n¼ 1.85 considered by Melnikov

et al.36 Fig. 2(b) illustrates the typical distribution of par-

ticles obtained for g¼ 1� 10�6, which indicates that no PAS

are formed unless g is larger than a threshold value. This as-

pect is of crucial importance in demonstrating the reliability

of the present algorithm.

Indeed, it is general consensus that PAS can emerge as

numerical “artifacts” (i.e., nonphysical phenomena) if the

used algorithm fails in keeping the velocity field solenoidal,

i.e., in maintaining the condition r � V ¼ 0 satisfied with a

reasonable approximation and/or if the accuracy of the nu-

merical scheme used for integrating the particle-tracking

equation is scarce.

It is obvious, that if PAS were produced by the algorithm

as the mere expression of numerical errors, then PAS patterns

(as mere artifacts of the numerical simulation) would emerge

regardless of the considered value of the inertia parameter g.

In particular, if PAS were the outcome of the accumulation of

numerical errors related to a non sufficient “volume-

preserving” ability of numerical schemes, then one would

obtain PAS even in the limit as g ! 0. This condition, there-

fore, can be used as a criterion to discern. Obviously, one must

also keep in mind that the other sensitive parameter to be con-

sidered in such analysis is the effective time integration step

used for the simulations and its influence on the emergence of

PAS (indeed, regardless of the order and nature, explicit or

implicit, of the integration scheme, the “numerical error” will

tend to zero as the time integration step (Dt) goes to zero).

Along these lines, in the present work, the following strat-

egy has been used to guarantee that the emerging PAS are

“physical”: assuming no particle inertia, it has been verified

that no PAS patterns are formed using a sufficiently small

time integration step Dt (in a sufficiently long time, say 102

times the interval required for the formation of physical PAS).

In practice, this criterion is in general implicitly satisfied

when the particle-motion equation is integrated together with

the 3D Navier-Stokes equations (i.e., at the same time and

with the same integration step); indeed, for these equations,

the Dt required by the numerical stability of the integration

algorithm is very small (several orders of magnitude smaller

than that used by other authors who solved the particle-

tracking equation “separately,” i.e., resorting to idealized ana-

lytical solutions for the base flow or a “frozen” solution of the

Navier-Stokes equation assumed to rotate at the same angular

frequency of the related thermofluid-dynamic disturbance).

We performed a simulation of particle motion by setting

g¼ 0 and albeit the very long time simulated (50 times the

time required for PAS formation when g is in the right range)

no stable or recognizable association of particles was

observed (Fig. 2(b)). Rather, emergence of PAS was

obtained only when the size of tracers exceeded the same

critical size (inertial parameter) identified by Melnikov

et al.36 (numerical simulations) and Schwabe et al.23 (experi-

ments), which is at the basis of the validation criterion used

here. The same philosophy has been used for the simulations

of PAS in RB flow (as an example, Figure 3 shows the fail-

ure in obtaining particle demixing and ensuing formation of

one-dimensional structures for g¼ 0).

F. Mesh, scheme order and error analysis

A grid Nz�Nr�Nu: 30� 62� 90 (selected on the basis

of a grid refinement study assuming convergence when the per-

centage variation of the maximum of azimuthal velocity

becomes less than 3%) has been used for the present simula-

tions of RB convection for the conditions specified in Sec. II A.

As anticipated, in Sec. II E, unlike earlier articles25,36

focusing on Marangoni flow, where the particle equation was

solved “separately” (the 3D solution was frozen to save compu-

tational time and the particle tracking equation solved using

such a frozen solution as a “background” state), here Eq. (4)

has been dynamically integrated together with Eqs. (1)–(3) (i.e.,

at the same time and with the same time integration step).

This is an important difference. Given the small value of

the nondimensional time integration step Dt required for the

TABLE I. Comparison with the results of Melnikov et al.36

Reference

Grid

(Nz�Nr�Nu)

Mode

m

Nondimensional angular

frequency of the hydrothermal

wave X¼ 2pf/m PAS

36 40� 40� 32 3 73.3 Yes

Present 32� 40� 40 3 71.4 Yes

FIG. 2. Projection of spatial particle distribution

in the xy plane (liquid bridge of NaNO3, Pr¼ 8,

A¼ 0.34, Ma¼ 20 600): (a) g¼ 1� 10�5

(snapshot of PAS at t¼ sPASffi 2� 10�1); b)

g¼ 1� 10�6 at t¼ 50� sPAS where sPAS

ffi 2� 10�1 is the nondimensional time required

for PAS formation in (a) (in this case no PAS is

formed, the same behavior occurs for g¼ 0).
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stability of the Navier-Stokes algorithm (Dtffi 10�6), one is

not forced to use high-order schemes for the integration of Eq.

(4). Even with a first-order scheme, in fact, the error produced

at each step (the so-called local truncation error37) is O(Dt2),

which accumulated over the number of iterations Niter

required for PAS formation in the RB case considered here

(typically Niterffi 2.3� 106 as will be discussed in detail in

Sec. III), gives a global truncation error37 NiterDt2¼O(10�6).

III. RESULTS

A. The traveling wave state

A snapshot of the thermofluid-dynamic field in the OS

state for the considered conditions (Pr¼ 1 and Ra¼ 3.5� 104)

is shown in Fig. 4. Resorting to a spatial perspective, this

state can be imagined (such a schematic view will prove very

useful for the description/characterization of related PAS

dynamics given later) as the superposition of a series of con-

centric axisymmetric toroidal rolls (like those existing prior to

the onset of timedependent 3D flow, generally referred to as

“target patterns” in the context of studies devoted to RB

convection) and a disturbance traveling in the azimuthal

direction.

In particular, 3 distinct rolls and 10 temperature

extremes (disturbances nodes) can be distinguished in the

meridian plane and in the cross-section (perpendicular to

the symmetry axis), respectively (which indicates that for the

considered case the flow is given by a three-roll toroidal

structure supporting the propagation of a disturbance with

azimuthal wavenumber m¼ 10; the related nondimensional

angular frequency, computed as X¼ 2pf/m where f is the

frequency of the temperature oscillations measured at a

generic mesh point, is Xffi 5.456).

B. The properties of the emerging PAS

Snapshots of PAS for distinct values of the inertia pa-

rameter g, obtained from N particles (N¼ 8� 103) arbitrarily

seeded into the field are shown in Fig. 5. The related value of

the parameter accounting for gravity has been fixed to

c¼ 105 (this being the limit value “tolerated” by PAS, whose

formation is otherwise prevented by particle sedimentation).

As a general feature already discussed for the case of

Marangoni flow in Sec. II E, PAS emerge only if g is larger

than a threshold value (e.g., no PAS is visible in Fig. 5(a)) as

apparently solid structures rotating at the same angular fre-

quency of the thermofluid-dynamic disturbance. Particles

initially dispersed in the fluid collect into a seemingly rigid

filament that moves as a unit; such a structure is stable and

FIG. 3. 3D Snapshot of particle distribution for Pr¼ 1 and Ra¼ 3.5� 104 in

an annulus with internal and external radii a¼L and b¼ 5L (L being the

axial extension of the system) in the case of no particle inertia considered

(g¼ 0, Niter¼ 107).

FIG. 4. Snapshot of traveling-wave state of RB

convection for Pr¼ 1, and Ra¼ 3.5� 104 (tem-

perature distribution for z¼ 0.5 and related

thermofluid-dynamic field in a meridian

section).
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rotates without changing its shape such that an illusion of a

solid structure is created.

For some values of g, in particular, converged PAS dis-

play (Figs. 5(b) and 5(c)) a regular shape with “lobes”

(appearing as petals in the projection of the PAS on the xy

plane) equally spaced in the azimuthal direction (with a

resulting behavior similar to that typically observed for Mar-

angoni flow in liquid bridges with a single toroidal roll20–24).

A range of values of g, however, exists (see, e.g., Fig. 5(d))

for which PAS formed by the combination of branches per-

taining to distinct rolls are possible.

No definition is perfect, and it is hard to disentangle a

definition from a property, but the following categorization

captures the essential aspects of the observed phenomena.

Three categories of possible PAS, in fact, can be defined on

the basis of the present observations: (i) regular PAS lines

given by the collective behavior of particles all attracted by a

closed path located on a single toroidal roll (as an example

Fig. 5(b) shows PAS “locked” on the external roll); (ii) PAS

pattern given by the independent existence of regular closed

lines formed on different rolls (Fig. 5(c)); (iii) irregular
closed lines due to the combination of portions of paths per-

taining to class (ii) (Figs. 5(d)–5(f)). In particular, the num-

ber of possible variants for this last case has been found to

be very high (with even minute variations of the g parameter

in the range 5� 10�5< g< 10�4 producing a myriad of dif-

ferent patterns and irregular shapes such as those shown in

Figs. 5(d)–5(f)). Given the observed peculiar behavior, such

a class of irregular geometric objects has been further inves-

tigated by repeating several times the same numerical simu-

lation at a fixed value of g for arbitrarily changing initial

positions of the solid particles (so to assess the nature of the

observed multiplicity of solutions).

These simulations have confirmed that the topology of

the PAS after the typical time (sPAS) required for their forma-

tion (according to the present simulations, approximately two

FIG. 5. Snapshots of PAS for different values

of the inertia parameter (nondimensional time

¼ 2� swave where swave¼ 2p/X, corresponding

to Niterffi 2.3� 106): a) g¼ 1� 10�5 (no PAS),

b) gffi 10�4, c) g¼ 8.5� 10�5, d) gffi 7� 10�5,

e) gffi 7.1� 10�5, f) gffi 7.2� 10�5.
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times the overall wave revolution period, i.e., sPASffi 2�swave

where swave¼ 2p/X, which corresponds to a number of itera-

tions Niter¼ sPAS/Dtffi 2.3� 106) does not depend signifi-

cantly on the particle initial positions, being essentially a

function of g (thereby providing evidence for the strong sensi-

tivity of such objects (attractors) to particle inertia).

The PAS shapes shown in Figs. 5(b), 5(c), 5(e), and 5(f)

were found to be stable with a further increase of time

(Niter¼ 5�sPAS/Dtffi 1.1� 107) with the fluid surrounding

the PAS being progressively depleted of particles as time

passes (particles being “captured” by PAS). Interestingly,

however, in some cases it was not possible to achieve a fully

converged behavior even increasing the computational time

by a factor 25 (Niterffi 6� 107, corresponding to 60 days of

simulation on a computer equipped with an Intel Core Duo

CPU E7500). A clear example of such a circumstance is

shown in Fig. 5(d).

The number of particles fluctuating in a given neighbor-

hood of the PAS clearly visible in this figure was found to

remain almost constant (less that 5% variation) over the

extended period simulated (2.4� 106<Niter< 6� 107).

In general, given intrinsic limitations of the approach

used (direct numerical solution of the Navier-Stokes equa-

tion, very high computational time, etc.), it was not possible

to assess the behavior of the system in the ideal limit as the

time t!1. Section IV, however, is devoted to elaborate

specific considerations about the possible existence of a gen-
eral overarching attractor governing all such dynamics and

about the reason why a swarm of fluctuating particles not

fully attracted by PAS may exist in some cases.

IV. DISCUSSION

Starting point of our discussion is the simple realization

that despite the richness of shapes displayed by irregular PAS

(class iii), the resulting onedimensional structures manifest a

very high, but discrete, number of variants (all produced by

combination of branches related to regular paths).

This property provides the hint for the existence of a

possible general overarching attractor/principle (not depend-

ing on particle properties, being rather an intrinsic

“topological” property of the base velocity field).

Figure 6 is a view of PAS in which they have been plot-

ted together with the isosurfaces of fluid (local) angular ve-

locity Hfluid¼ fz/2, where fz is the axial component of

vorticity. This view is particularly meaningful if we recall

that, in general, the two components of vorticity f ¼ r� V
in the azimuthal, and axial directions

fu ¼
@Vr

@z
� @Vz

@r

� �
; (5a)

fz ¼
1

r

@

@r
ðrVuÞ �

@Vr

@u

� �
; (5b)

can be regarded, respectively, as a measure of the strength of

the basic toroidal roll(s) (fu) and departure from the axisym-

metric state (fz).

The latter contribution, in fact, is zero if it is evaluated

in the axisymmetric state (the aforementioned target pattern

with circular concentric rolls), but it is nonzero in a 3D state

where, more specifically, its half (fz/2) can be regarded as a

measure of the local average angular velocity (spin) of the

considered fluid element about the vertical direction (see,

e.g., Ref. 38).

Most remarkably, Figure 6 makes evident that PAS lines

tend to stay attached everywhere to the isosurfaces Hfluid¼X
(there is a strong geometrical correlation between such iso-

surfaces and the PAS; this figure has been obtained for

g¼ 8.5� 10�5, the property of PAS of staying attached

everywhere to the isosurface, however, has been verified for

all the considered values of this parameter), thereby lending

further credence and validation to the theory originally ela-

borated by Schwabe et al.23 and Pushkin et al.29 for Maran-

goni flow, by which PAS occurs because the “turnover

particle motion” becomes synchronized with the rotating

wave oscillations.

Extremely tiny differences in the initial value used for g
lead to significant variations in the calculations (in terms of

shape of resulting PAS), an important restriction, however,

being represented by the property of PAS of staying attached

to the general overarching attractor given by the set of points

satisfying the condition Hfluid¼X.

At this stage, the existence of a limited number of par-

ticles fluctuating in a given neighborhood of the PAS for cer-

tain values of the inertia parameter may be “seen” as the

effect of the attractive action exerted on them by distinct

rolls via the phase-locking mechanism. Under a similar per-

spective, this behavior may be seen as a consequence of the

(co)existence of distinct possible PAS at close values of the

inertia parameter, i.e., as a natural consequence of the multi-

plicity of solutions, which of the PAS in RB convection is

the most striking feature.

In other words, specific values of g may exist at which

the attractive action exerted on particles by two distinct paths

FIG. 6. PAS lines and isosurfaces of fluid (local) angular velocity for

Hfluidffi 5.4 (PAS lines stay attached to the isosurfaces of fluid local angular

velocity where Hfluid¼X as predicted by the so-called phase–locking theory).
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(both satisfying the condition Hfluid¼X, see Fig. 6) may be

comparable, thus, preventing all particles from being fully

captured by a single path.

The possible competition between distinct solutions

existing at close values of the control parameter is not a new

fact in the dynamics of nonlinear systems (in general), and in

fluid-dynamics (in particular); the interested reader is

referred to, e.g., the excellent studies about the multiplicity

of solutions and the so-called “bistability” problem in ther-

mogravitational convection by Refs. 39–42. These fascinat-

ing aspects (which are also common to other disciplines and

fields43–46) certainly deserve attention also in the case of

PAS dynamics and it will be the subject of future studies.

V. CONCLUSIONS

The main conclusion of this analysis can be summarized

as follows:

• PAS can emerge in RB convection provided specific con-

ditions are established (which are the existence of at least

one roll with toroidal structure and a disturbance traveling

in the azimuthal direction having the characteristics of a

wave; conditions that seem to be satisfied only for Prffi 1

in a region of the space of parameters, where the so-called

OS mode of the Busse balloon occurs);
• An intrinsic feature of PAS patterns in RB flow is their va-

riety (not observed in Marangoni flow);
• The richness of PAS shapes should be regarded as the

result of the tendency of particles to select one of the sev-

eral possible “attractive” paths according to their inertia;
• The sea of potential paths and their tortuosity are sup-

ported by the “granularity” of the surfaces satisfying the

condition for phase locking Hfluid¼X (which makes pos-

sible the formation of PAS) in the OS state (Fig. 6).

The resulting mathematical relationship between parti-

cle axial vorticity and the characteristic phase velocity of

propagation of the disturbance, and its application to cases

which have nothing to do with Marangoni convection, in its

broadest sense, provides a general theory to characterize the

properties of all PAS phenomena produced by distinct types

of flows.

To some extent the criterion identified here (Hfluid¼X)

may simplify the considered subject by abstracting from spe-

cific cases (Marangoni flow in geometries with free surfaces

and RB convection in geometries entirely delimited by solid

walls) features which are essential in the description of the

general phenomenon of PAS in other circumstances (not

necessarily related to these examples), thereby allowing the

phase-locking theory for PAS formation23,24,29 to spread

from its initial heartland of surface-tension-driven flows and

related disciplines to a more general (perhaps universal)

context.

With specific regard to RB convection, moreover, the

identification of a new “family” of attractors, together with

the related intrinsic multiplicity and sensitivity to particle

inertia, is of enormous conceptual significance. Indeed, it

opens new fascinating (heretofore unexplored) perspectives

in the study of this kind of convection in combination with

particle aggregation phenomena and related theories for pat-

tern formation in a variety of fields [ranging, just to cite

some examples, from mechanisms operating at very large

scales (e.g., related to the initial stages of planet formation

driven by the accumulation of small dust particles), to all

small-scale technological applications which simply share

the use of microfluidic devices to manipulate the transport of

tiny particles].
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