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Abstract: The present analysis extends earlier theories on patterns formed by the spontaneous 
accumulation and ordering of solid particles in certain types of flow by considering the case in 
which the particle carrier flow has the typical features of a “standing wave”. For the first time an 
explanation for this phenomenon is elaborated through arguments based on the interplay between 
vorticity and wave-interference dynamics (following a deductive approach after the so-called phase-
locking or “resonance” model originally introduced by Pushkin et al., Phys. Rev. Lett., 106, 234501  
(2011) and later variants developed by Lappa, Phys. Fluids, 25, 012101, (2013) and Chaos, 23, 
013105, (2013)). The results of dedicated numerical simulations are used in synergy with available 
experimental work. An interesting analogy is proposed with the famous Chladni’s series of 
experiments on patterns formed by sand on vibrating plates. 

 
 
I. INTRODUCTION 
 
Two-phase dispersive flows are found under many natural and technical conditions. The relevance 
of such phenomena is wide ranging and touches various scientific disciplines, including (but not 
limited to) environmental sciences, thermal and materials engineering, crystal growth, biology and 
bioengineering, and many other modern applications primarily driven by microtechnology. The 
spatio-temporal behaviour of the dispersed phase (immiscible “impurities” of different types, e.g., 
small drops, bubbles, solid or even “elastic” pieces of matter such as biological cells, hereafter 
simply and generically referred to as “particles”) has become over the years a subject of great 
interest (from both practical and theoretical points of view).  
In general, it is known that the related dynamics can be characterized in the phase space (a multi-
dimensional phase space whose dimension corresponds to the number of degrees of freedom of the 
considered dynamical system) in terms of “attractors”. Indeed, a well-known characteristic of 
dissipative systems is that their phase trajectories are attracted by special sets of points (having the 
property that different trajectories, arising from them, fall on them anyway, from which their 
denomination of “attractors”). The nature and “multiplicity” of these geometric objects depend 
essentially on the specific dynamics considered. 
For the case of particles transported by a carrier flow, this subject becomes even more interesting 
and aesthetically appealing as the existence of attractors in the phase space is fully reflected in the 
formation of coherent particulate structures in the physical space (the abovementioned attractors 
exist in the full phase space as invariant sets, but what we observe in practice is always a projection 
of these sets onto the physical space).  
It is known that particle relocation in a liquid (particles completely removed from specific regions 
of the domain) can be induced by a variety of effects (gravity, surface tension, shear, electric or 
magnetic fields)1-9. As an example, in the Earth’s gravitational field the usual differences in density 
cause rapid spatial segregation of particles through sedimentation or flotation; in the absence of 
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gravity (microgravity) similar phenomena can be induced by gradients of surface tension. In 
technological casting applications all these effects typically prevent a homogeneous distribution of 
particles in the melt, hence limiting the industrial exploitation of many alloys. There is a variety of 
additional instances that could be cited. The microstructure of several immiscible blend systems 
depends strongly on the events that occur during processing. As recently illustrated by Saeedi et 
al.10, moreover, all these phenomena and related studies are also relevant in many cases to 
nanotechnologies and related products. Self-assembly is emerging as one of the main methods for 
construction of heterogeneous systems consisting of multiple component types in nano- and micro-
scales. What is even more remarkable in such a field, microfabrication has opened the door to new 
ground-breaking concepts for phase separation, such as “deterministic hydrodynamics”, by which 
distinct (solid/liquid) phases can be controlled on the basis of innovative ideas taking advantage of 
the intrinsic properties of the considered fluid-dynamic systems (related bifurcations, patterns and 
more or less pronounced degree of turbulence). 
In particular, a very interesting and fruitful line of inquiry, which does not rely on a specific type of 
force or flow and is, therefore, applicable to a variety of cases and situations, is that related to the 
spontaneous particle association promoted by inertia (i.e. by small deviations induced on particle 
trajectories by their finite mass and volume with respect to the paths that would be ideally followed 
by weightless and sizeless tracers, Michaelides11; Balkovsky et al.12; Benczik et al.13).  
Some interesting criteria to predict the inertial particle relocation/clustering dynamics in three-
dimensional steady or two-dimensional time-periodic flows were elaborated by Sapsis and Haller14. 
In these studies the particles were found to be attracted by inertial Lagrangian coherent structures 
(ILCS) that are smooth deformations of invariant tori.  
In such a context, over recent years, several investigators (see the excellent studies by Schwabe et 
al.15-16 and Ueno et al. 17-18) have reported on the formation of patterns given by the aggregation of 
small particles in three-dimensional incompressible model flows consisting of one or more rolls 
with toroidal structure and a travelling wave (TW), i.e. a disturbance travelling in the azimuthal 
direction.  
On the one hand, related particle accumulation structures (PAS) have been frequently observed in 
experiments. On the other hand, however, theoretical research conducted by different groups has 
shown little agreement. Indeed, there is no unified theory yet for this phenomenon (the reader is 
referred to, e.g., Kuhlmann et al.19 for a recent review of a large cross section of fundamental 
research on this topic). Schwabe et al.16 originally interpreted this process in terms of a “resonance” 
mechanism. While Pushkin et al.20 introduced later the related concept of “phase locking” somehow 
resembling that elaborated by other authors21-23 to explain a fascinating companion phenomenon 
(suspended particles in a two-dimensional periodic lattice of obstacles following periodic 
trajectories which exhibit directional locking into lattice directions), Muldoon and Kuhlmann24 
described it in terms of a structural instability of an elliptic orbit of a Kolmogorov-Arnold-Moser 
(KAM) torus (which is an time-invariant topological feature of the flow). Moreover, even the 
pertinence of the description in terms of supercritical Marangoni flow, as the sole paradigmatic 
precondition able to produce this phenomenon, is still a debated point25. 
In the first case (Schwabe et al et al.16, Pushkin et al.20), the resonant (inertial) coupling between 
travelling fluid-dynamic disturbances and the typical particle turnover time (the characteristic time 
taken by the particle to follow a given closed path) is at the root of the theory. A later revisitation of 
this model in terms of particle axial vorticity is due to Lappa26, who replaced the particle turnover 
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frequency with equivalent arguments on the particle angular spin. This variant has its basis in the 
ideas originally developed (although in a completely different theoretical environment) by Rhines27, 
who identified a process able to support the formation of azimuthally elongated structures in 
atmospheric flows at the scale where the period of atmospheric (Rossby) waves matches the 
turnover time of typical eddies (vortices) associated with atmospheric turbulence. 
In this study, we wish to show that this class of (inertial) models, can become effective also in 
explaining the bizarre phenomena which emerge when the considered flow has the form of a 
standing wave (SW), provided it is properly reinterpreted and extended. 
As shown by recent experiments (Fig. 1a, Schwabe and Mizev28), for which an explanation has not 
been found yet, when the flow is a standing wave, the patterns created by the spontaneous demixing 
and accumulation of particles show an appearance that is totally different from the PAS formed by 
travelling waves. The essentially stationary nature of the resulting pattern as seen in the laboratory 
frame and its topological properties distinguish such a case from PAS phenomena observed 
previously (for which particles were seen to collect into a seemingly rigid closed path rotating in 
the laboratory frame at the same angular frequency of the travelling wave so as to give the illusion 
of a stationary solid circuit in the reference frame rotating with the wave).  
It is unknown whether the mechanisms supposed to be operative in the case of TW still play a role 
in this case or not. From available experiments (Fig. 1a), one can see that the particle pattern 
consists of 2m sectors (6 sectors for m = 3 where m is the azimuthal wavenumber), which, like 6 
pieces of a cake, are separated by 6 sharp radial stripes formed by close particles28. The pattern also 
includes an inner particle circuit with shape and average radial position varying in time (a snapshot 
of this circuit is sketched for clarity in Fig. 1b). 
It is shown here how these new intriguing dynamics, which can be explained neither in terms of 
stagnation surfaces (the aforementioned radial branches and the inner circuit are not stagnation loci), 
nor on the basis of  KAM tori (given the absence in the considered flow of azimuthally extended 
closed stable streamtubes, whose existence is a necessary prerequisite of that class of models) can 
be given a relatively simple explanation if the problem is cast in the form of axial vorticity 
dynamics and related physical connections with inertial mechanisms. 
 
 

II. MATHEMATICAL MODEL  
 
A. The Pulsating state and the vorticity-wave interaction mechanism 
 
To fully understand the consequences of the above (axial-vorticity-dynamics based) way of thinking 
(and appreciate the related theoretical implications for the considered problem), we have to recall 
shortly the general properties of a standing wave (the reader is referred to, e.g., Shevtsova et al.29 
for the companion regime in which the flow has the spatio-temporal structure of a TW). In physics, 
a standing wave (also known as a stationary wave), is a wave (a disturbance oscillating in time) that 
remains in a constant position. In general, in a stationary medium this phenomenon emerges as a 
result of the interference (superposition) of two waves having the same amplitude and same angular 
frequency , but travelling in opposite directions. This typically results in a field with no net 
disturbance transport on average along the propagation direction of the two component waves (the 
azimuthal direction  in the present case for which we consider a liquid bridge). In terms of 
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patterning behaviour, the final effect is a series of nodes (disturbance zero amplitude) and anti-
nodes (disturbance maximum amplitude) at fixed locations along  (as shown, e.g., by Lappa et al.30, 
the node/anti-node distance is λ/2 where λ=/m). Albeit there is no net disturbance transport along 
the positive (or negative) azimuthal direction, the disturbance propagates from each anti-node to the 
two surrounding nodes with variable (location-depending) angular velocity. More specifically, by 
indicating with  the variable disturbance angular frequency, the following conditions represent a 
good phenomenological model of a SW: =0 on all nodes, = on all antinodes, with all points 
located in other meridian planes experiencing an apparent disturbance angular velocity 0< (Fig. 
1b).  
The above description can be applied to both thermal and velocity (or vorticity) disturbances. In the 
following, we will expressly concentrate on axial vorticity  zV  as the wave representative 

disturbance (where V is the fluid velocity and the subscript z denotes the component of the curl 
operator in the axial direction; as shown by Lappa26, this quantity assumes a particularly meaningful 
role, as it is everywhere equal to zero in the axisymmetric (steady) state that precedes the onset of 
three-dimensional (3D) flow and assumes values0 in the supercritical state only, where, more 
specifically, its half can be regarded as a measure of the local average angular velocity (spin) of the 
considered fluid element about the vertical direction). 
Before discussing the detailed results of specific calculations, it is helpful to consider some general 
physical consequences of the above representation of SW when it is considered in combination with 
the resonance (phase-locking) theory. In the light of such a theory and related revisitation provided 
by Lappa (hereafter, simply referred to as the vorticity-wave model), particles should accumulate 
where the angular spin  
 

 zfluid V
2

1
          (1) 

 
attains a value 0. Any particle located at a position where fluid0 and, in particular, fluid, in 
fact, would tend to undergo the vorticity-wave coupling/locking mechanism and, as a result, to 
leave its initial position (moving in the azimuthal direction by virtue of the resonance (or 
synchronization) physical process initially theorized by Schwabe et al.16). 
 

B. Nondimensional field equations 
 
To verify these arguments, here, the Navier-Stokes and energy equations have been solved 
numerically in cylindrical coordinates (r, z, ). The related nondimensional form has been obtained 
using conventional thermal scalings26 (i.e.  the axial system extension (L) as a reference length, the 
energy diffusion velocity V = /L as a reference velocity and all the other reference quantities 

derived accordingly). The resulting equations read:  
 
 V 0           (2) 
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  TTV
t

T 2

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          (4) 

where Pr=/ (kinematic viscosity/thermal diffusivity) is the well-known Prandtl number.  

To track particle motion we have used the Maxey-Riley equation (see, e.g., Babiano et al.31): 
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where Vpart and V  are the particle and fluid velocity, respectively (the velocity components in the 

axial, radial and azimuthal directions being denoted by Vz, Vr and V, respectively). Moreover,  is 
the ratio of the particle to the fluid density and St is the Stokes number defined as 
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where ~  is the so-called relaxation time, linked to the solid particle radius R
~

 by the expression  
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and  1
~
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 

L
 is a general parameter26 accounting for the combined effect of particle inertia 

and drag ( =O(10-5), Pr=O(10) and =O(1) for the conditions considered here St<<O(1)).  

 

 

C. The study case 
 
As a sample SW we use typical supercritical Marangoni flow, but conclusions are applicable to 
pulsating flows of gravitational nature as well (see, e.g., Boronska and Tuckermann32) and, in 
general, to any flow with the characteristics of a SW. 
In particular, we focus on the following well known test case (Melnikov et al.33; Lappa26,34): a liquid 
bridge with aspect ratio A=0.34 (A being the height to diameter ratio) delimited by solid horizontal 
disks (one at z=0 cooled, the other at z=1 heated, adiabatic conditions on the liquid/gas interface). 
The considered values of the Prandtl and Marangoni numbers are Pr=8 (NaNO3) and Ma=2.06x104, 
respectively (Ma defined as TTL/ where T is the surface tension derivative and  the dynamic 
viscosity). Moreover, no steady residual gravity is considered (Ra=0) and no arbitrary disturbances 
are added to the basic state to accelerate the transition to 3D flow. For these conditions 71.4 and 
the supercritical state displays the same succession of stages of evolution already observed for high-
Pr liquids in other circumstances30 (initial pattern with disturbances growing exponentially in time, 
followed by the transitory appearance of the standing wave, finally replaced by a rotating TW 
pattern as the asymptotic equilibrium waveform26,34).  



Phys. Fluids, Vol. 26, No 1, 013305, (2014) 
 

 6

The value of  is 1x10-5, which corresponds to the particles with density (solid/fluid) ratio =1.85 
and size 45 m (St10-4) considered by Melnikov et al.33. The numerical simulations with the 
dispersed solid phase have been limited to the timeframe with the oscillatory Marangoni flow 
behaving as a pure standing wave (temperature disturbances simply consisting of a number m of 
couples of spots (hot and cold) pulsating at fixed azimuthal positions along the interface with no net 
disturbance transport on average along the azimuthal direction and no net azimuthal flow). Before 
starting the numerical computations, solid particles (Nparticles=104) have been seeded uniformly into 
the computational domain assuming the initial velocity of each  particle equal the local fluid 
velocity. 
 
 
D. Solution method and numerical accuracy 
 
The mass, momentum, energy and the particle-motion equations (2-5) have been solved over a 
cylindrical mesh (NzxNrxN =32x40x40) with a time integration step t 5x10-8 (required for the 
stability of the used time-explicit primitive-variable algorithm). Specific details about these 
methods have been already published and are not duplicated here for the sake of brevity. For a more 
in-depth analysis the interested reader is referred to the original work (see, e.g., Refs35-37; while for 
a validation study of the overall fluid-solid phases tracking algorithm, the more recent Ref34 may be 
considered). Here we limit ourselves just to mentioning that eq. (5) does not account for a back 
influence of particles on convection (it is based on a one-way coupling assumption, i.e. particle 
motion cannot alter the liquid flow). Moreover, particles are assumed to be independent of each 
other (this is permissible if the concentration of the dispersed phase in the flow is small, i.e. if the 
distance of a particle from others is much larger than their characteristic size, see again Ref34 and 
references therein). Despite such approximations, however, tracers moving close to the solid 
boundaries require a special treatment (given the no-slip properties of such surfaces acting as sinks 
of momentum and, therefore, as potential particle-entrapping loci). Following earlier studies, in 
particular, we assume the dispersed solid phase to interact in a non-elastic fashion with walls (in 
practical numerical implementation, this means a particle can approach the solid boundary until a 
distance not smaller than its radius is achieved; then it is allowed to slide along the boundary until 
the wall-normal velocity component becomes directed inwards). The same condition has been 
implemented also for two limited portions (5% of L) of the free liquid/gas interface (located in 
proximity to both the cold and hot corners to avoid the unphysical accumulation of particles there 
noticed during the preliminary tests performed for the validation of the algorithm). 
The underlying assumptions on which this approach is based are, therefore, particles with 
solid/fluid density ratio 1, a perfectly spherical shape, non-elastic particle-wall interaction and a 
very small value (<<1) of the particle to fluid system characteristic size ratio (which implies a 
particle response time much less than the characteristic time scales of the considered flow, this 
condition being a necessary prerequisite for the validity of the Maxey-Riley equation34). For such 
conditions, the resulting numerical error related the integration of eq. (5) with a first-order scheme 
(accumulated over the number of iterations Niter performed to study the phenomenon, see, e.g., 
Atkinson38) can be estimated as Nitert2=O(10-8) (in the present case Niter being 1.2x107).  
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III. RESULTS AND DISCUSSION 
 
As a confirmation of the arguments developed in the preceding text (see, in particular, Sect. II.A), 
the simulations have shown that, when the supercritical Marangoni flow is in the so-called pulsating 
(SW) regime, extended regions exist at any time and in each sector where 0<fluidmax (max=) 
and, therefore, resonance (vorticity-wave coupling) between particles and the travelling disturbance 
is expected to take place (Fig. 1c). 

  a) 

                        b)         c) 
Fig. 1: Standing PAS: a) Projection in the xy plane of particle distribution (experimental results, 
snapshot, courtesy of D. Schwabe and A. I. Mizev); b) related sketch showing the regions where 
particle preferential concentration occurs (given by 6 sharp radial stripes and an inner closed circuit 
having approximately a triangular shape); c) contour plot (numerical results, snapshot) of particle 
angular spin    rVrVr rfluid 2/   at z=0.5.  

 
The numerical results (Figs. 2 and 3) also prove that, as expected, the particles accumulate exactly 
on the isosurfaces of fluid such that fluid 0. In very good agreement with experimental results, 
particles seem to “decorate” the boundaries between the 6 existing sectors. 
Indeed, these are the only possible equilibrium positions. Any other location in space would be 
unstable with respect to the vorticity-wave mechanism. A particle leaving the surfaces fluid 0 
would undergo the phase-locking process and finally move back to positions where fluid 0 (Figs. 
4). Most interestingly, the numerical results also lead to the conclusion that the loci of points where 
fluid=0 are not limited to the boundaries between the six aforementioned sectors. An isosurface 
extended over 360 with fluid=0, in fact, exists, whose radial position changes in time: it “pulsates” 
moving from the external surface (Fig. 3a) towards the axis of the liquid bridge (Fig. 3f) and vice 
versa. As evident in Figs. 3, particles stay also attached to such a surface; which one side provides 
further evidence to the validity of the present “equilibrium” model and, on the other side, explains 
almost perfectly the existence of the pulsating inner triangular particle circuit visible in Fig. 1.  
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a) b) c) 

d) e) f) 
Fig. 2: Snapshots (projection in the xy plane of the effective threedimensional particle distribution) 
equally spaced in time during half a period of oscillation  (liquid bridge of NaNO3, Pr=8, A=0.34, 
Ma=20600, standing wave,  =2/, =71.4,  =1.85, St10-4). 

a) b) c) 

d) e) f) 
Fig. 3: 3D snapshots (equally spaced in time) of particle distribution and isosurfaces of fluid 0           
(-1fluid1) during half a period of oscillation  (liquid bridge of NaNO3, Pr=8, A=0.34, 
Ma=20600, standing wave,  =2/, =71.4,  =1.85, St10-4, Nparticles=104). 
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In this regard, it is worth pointing out a possible analogy with the famous phenomena originally 
discovered and studied by Ernst Chladni. This family of experiments (generally referred to as the 
“Chladni’s acoustic experiments” 39) has its basis in a plate or membrane covered in sand or similar 
material, that gets vibrated at various frequencies producing interesting patterns. 
It is a well-known fact that a plate or membrane vibrating at resonance is divided into regions 
vibrating in opposite directions, bounded by lines of zero vibration called “nodal lines” (the loci of 
points where elastic waves produced in the plate by the application of external vibrations and 
propagating in different directions reunite and die). Chladni’s technique consisted of drawing a bow 
over a piece of metal whose surface was lightly covered with sand. The plate was bowed until it 
reached resonance. At that stage, vibration was observed to cause the sand to move and concentrate 
along the nodal lines where the surface is still, thereby giving rise to various intricate patterns 
consisting of one-dimensional segments, curves and lines.  
In view of such arguments, the affinity with present phenomena may be thus further elaborated as 
follows: Just as in the Chladni’s experiments the sand initially bounces about on the plate until it 
settles in the areas of zero movement (thereby outlining the nodal lines which separate regions of 
the plate vibrating in opposite directions), the solid particles in the liquid bridge are pushed away 
from the areas of active hydrothermal disturbance propagation (the regions with 0 where phase-
locked particles tend to move in azimuthal direction via the vorticity-wave resonance process) and 
gather in the places where the combination of the two counterpropagating waves gives no effect 
(local disturbance amplitude and velocity zero). 
Another possible way to justify the isomorphism between these two categories of phenomena 
simply consists of considering the possibility to replace formally:  
 
 

 The two-dimensional space in the Chladni’s experiments with the fully three-dimensional 
space in the present (liquid bridge) case,  

 The “motion” effect exerted by resonant vertical plate vibrations on sand (via elastic 
coupling between sand beads and the underlying oscillating surface) with the motion of 
phase-locked tracers in azimuthal direction (via the vorticity-wave coupling mechanism),   

 The loci of points where the plate remains motionless with the loci of points in the liquid 
bridges where the two counterpropagating waves combine such that the resulting 
disturbance has no amplitude and no velocity (i.e. =0). 
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    a) 
 

   b) 
 

   c) 
 
 

 
Fig. 4: Examples of typical particle trajectories (liquid bridge of NaNO3, Pr=8, A=0.34, Ma=20600, 
standing wave, =1.85, St10-4, nondimensional time covered by the particle 0.566xwave where 
wave=2/, =71.4, initial particle position P0=(r0, 0, z0)): a) r0=0.62, 0=306, z0=0.597, b) 
r0=0.62, 0=198, z0=0.339, c) r0=0.9, 0=213, z0=0.585. 
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The efficiency of the vorticity-wave mechanism in promoting the accumulation of particles on 
disturbance-less surfaces is clearly shown in Figs. 4, which provides some examples about typical 
trajectories followed by particles in space over a relatively long  representative time interval 
(6xwave where wave=2/). 
On the basis of these figures particle trajectories may be categorized into three main types: 
 

1) Trajectories that, arising from a point in proximity to an equilibrium radial surface (meridian 
plane separating two sectors), end on the equilibrium surface anyway (after covering a 
limited angular neighbourhood, Fig. 4a); 

2) Trajectories of particles that move from an equilibrium meridian plane to another and then 
back to the initial plane, spending a very limited time in the intermediate space (Fig. 4b);  

3) Trajectories that cover two sectors, still spending, however, a relatively limited time in 
regions separating equilibrium conditions (Fig. 4c). 

 
In the first case, a particle undergoes some back and forth azimuthal oscillations across the 
equilibrium (radial) section (the S6 plane in Fig. 4a); the angular amplitude covered by the particle 
before returning to the equilibrium section (after the particle leaves it moving in the clockwise or 
anticlockwise direction) is approximately /2m. The overall time spent by the particle in regions 
exceeding 10 of angular distance from the equilibrium meridian plane is on average (over the 
monitored temporal extension) 25% of the considered timeframe (6xwave). 
In the second case, a particle escapes an equilibrium surface after performing several stable 
revolutions (complete orbits around the Marangoni toroidal vortex at an approximately constant 
azimuthal location) and rapidly moves to another equilibrium meridian plane (e.g., from the S4 to 
the S3 plane in Fig. 4b). After reaching the new equilibrium section, then the particle stays there for 
some time (again, covering several complete orbits) and finally it comes back to its starting surface. 
For such a case, the overall angular extension covered by the particle is obviously equal to the 
angular amplitude of a sector, i.e., /m, while the overall time spent in the space between the two 
bounding equilibrium meridian planes is only 15% of the considered timeframe (6xwave). 
The third case may be regarded as a variant of the second class of trajectories for which an 
incoming particle captured by an equilibrium surface (the S5 plane in Fig. 4c), after covering 
several complete orbits is then released in the next sector, thereby retaining its original sense of 
azimuthal propagation (from the S4 towards the S6 plane); in such a case the particle covers an 
overall angular space 2/m in the considered timeframe. 
Similar observation and measurements performed over a representative set of 100 particles 
(uniformly distributed in the 3D space at the initial instant) have led to the conclusion that the time 
spent on average by particles in the “regions of influence” of equilibrium sections Si (here a region 
of influence is defined as the portion of 3D space originating from the generic Si radial section with 
an angular extension = 10 in each angular direction) is more than 80% of the computed time. 
Such a percentage may be regarded as a possible quantification of the efficiency of the vorticity-
wave coupling/resonance mechanism in keeping particles spatially confined (thereby forming the 
recognizable patterns observable both experimentally and numerically).  
According to the present numerical simulations, such efficiency even increases when the standing 
wave is taken over (as time passes30,40) by the TW. Indeed, the percentage of scattered (i.e. not 
undergoing accumulation in precise loci) particles tends to zero as the SW is fully replaced by the 
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TW. Moreover, the formation of recognizable structures in the standing wave regime takes a time 
higher (50% more) than that required when the prevailing waveform is a travelling wave. 
The reason for such differences perhaps may be found in the different “nature” of the equilibrium 
conditions established for particles in the two regimes. It is reasonable to assume that, given the 
well-defined and stable coupling between the propagating disturbance (at a constant angular speed 
=) and the motion of particles, guaranteed by the condition fluid==const25-26, the TW may 
provide an “asymptotically stable” condition in terms of vorticity-wave locking (in the Lyapunov 
stability sense), whereas the SW is able to provide no more than a situation of simple Lyapunov 
stability (given the intrinsic “alternating” nature of the mechanism keeping particles confined in 
proximity to equilibrium surfaces).  
 

IV. CONCLUSIONS 
 
The mechanism related to the formation of the so-called particle accumulation structures is still not 
clear, and there exists today, to our knowledge, no definitive theoretical and/or empirical model that 
can adequately characterise such phenomena in every circumstance. Motivated by this observational 
tide, we have tested the basic dynamical principles governing the so-called resonance model in a 
specific situation (standing wave) where excluded are any processes that depend on the existence of 
invariant properties (regular closed streamtubes) or a preferential direction of propagation of the 
thermofluid-dynamic disturbance (a case which may therefore provide useful indications on the 
validity and generality of  such a model, especially if one considers that till date all existing theories 
have been successfully applied to the travelling-wave only). 
The numerical simulations confirm the applicability of the resonance model to this specific case.  
Extended regions exist at any time within the liquid bridge where the angular spin of the fluid is 
locally equal to the (as phenomenologically experienced by a fixed local observer) velocity of 
propagation of the hydrothermal disturbance in the azimuthal direction. As time passes most of 
particles stay attached to isosurfaces where the axial vorticity is close to zero (not limited to specific 
radial planes, but also including a surface of variable shape extended over 360).  
Just as in the case of PAS formed in the travelling-wave state, the emerging structures can be said to 
be an “illusion” as the particles do not really attach one another to form solid items and do not 
occupy fixed positions. All particles experience an endless motion. If a particle is located on an 
equilibrium meridian plane it performs a continuous revolution around the core of the toroidal 
Marangoni roll with some limited back-and-forth oscillations in the azimuthal direction. If it is not 
located on one of the six radial equilibrium sections, it is quickly driven back to one of such loci or 
it can “survive” for some time in the intermediate space provided it is captured by the 
circumferential isosurface where the axial vorticity is close to zero (once a particle is captured, if its 
axial coordinate changes, its radial and azimuthal coordinates change accordingly in such a way that 
it remains located in proximity to the isosurface). This process is very dynamic as this azimuthally 
extended surface is not stationary (as time passes, following the general pulsating behaviour of the 
termofluid-dynamic field, it changes shape and moves from the interior of the liquid bridge towards 
its external liquid/gas interface and then back towards the interior). By virtue of this mechanism, 
particles are transferred occasionally from an equilibrium plane to another. 
Stripped to its basics, the related explanation for PAS formation envisions a restoring effect played 
by the vorticity-wave coupling mechanism in keeping particles confined to specific zones of the 
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physical space, in particular, those where particles cannot phase lock with the travelling disturbance. 
Among other things, the resulting “equilibrium” model is susceptible of a remarkable analogy with 
the famous Chladni’s series of  experiments on patterns formed by sand on vibrating plates (sharing 
with the present situation many common elements), which further supports the physical relevance 
and generality of the proposed model.  
There is no doubt that some of the theoretical arguments elaborated in this study would deserve a 
own exhaustive treatment and that the investigation of PAS in standing waves will attract additional 
future interest. As mentioned above, the work brought forward in this paper, was expressly 
undertaken to gain further understanding of the effectiveness of the resonance model in comparison 
with other theories. The fact that both experimental and numerical results discussed here perfectly 
fit the processes that one would expect to be operative under the influence of the resonance 
mechanism also in a standing-wave flow, suggests that phenomenon-controlling steps have been 
taken into account, and that the Schwabe-Pushkin theory may be indeed the correct one. 
Among other things, the present study will also support the preparation of the microgravity 
experiment JEREMI (Japanese European Research Experiment on Marangoni Instabilities). Being  
developed by the “International Topical Team on Marangoni instabilities in systems with 
cylindrical symmetry” (with the support of JAXA and ESA) and scheduled for execution on board 
the International Space Station on 2016, this experiment will provide a relevant opportunity for 
investigating the dynamics of particle accumulation phenomena in liquid bridges. 
The basic information gleaned from these future analyses will help scientists to develop better 
models to predict the properties of coherent particulate structures. Those, in turn, will lead toward 
ways to improve industrial technologies, increasing efficiency, reducing costs, or perhaps creating 
new processes. It is also obvious that, apart from the potential practical applications enabled by 
these studies, understanding the rich contextual information associated with the related evolution 
mechanisms will help us in using it to infer the general principles which drive complex patterns in a 
variety of other phenomena occurring in the physical world. 
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