Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Synthesis and physical property evaluation of a series of poly(N-2-pyridylmethyl methacrylamide-co-methyl methacrylate)s and related polymers

Stolbova, M. and Hudson, N.E. and Pethrick, R.A. and Sherrington, D.C. and Slark, A. (2005) Synthesis and physical property evaluation of a series of poly(N-2-pyridylmethyl methacrylamide-co-methyl methacrylate)s and related polymers. Journal of Macromolecular Science B: Physics, 44 (6). pp. 941-965. ISSN 0022-2348

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The synthesis and physical properties of a series of poly(N-2-pyridylmethyl methacrylamide-co-methyl methacrylate)s and related copolymers is presented. High yields of the copolymers were obtained starting from copolymers of methacryloyl chloride with methyl methacrylate, which reacted almost quantitatively with 2-pyridylmethylamine or a related amine, to give copolymers that are capable of interpolymer chain hydrogen bonding. Copolymers of (N-2-pyridylmethylmethacrylamide) (PyMeMA) were obtained in high yield and investigated in detail. The variation in the molar mass data obtained using different methods was interpreted as being a consequence of solvent-induced aggregation effects. Examination of the solution properties indicated that the polymers are indeed able to form transient aggregates through hydrogen bonding interactions that, when subject to shear, separate into smaller aggregates or individual polymer chains. These hydrogen bond interactions are also evident in the solid state physical properties as observed in variation of the glass transition temperature, but to a lesser extent than they are in the dynamic mechanical analysis. Adhesion measurements once more indicate the potential of these materials to exhibit enhanced properties as a consequence of hydrogen bonding interactions.