Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with
large viscosity difference

Haihu Liu,* Yaping Ju,’ Ningning Wang, and Guang Xi
School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China

Yonghao Zhang
James Weir Fluids Laboratory, Department of Mechanical & Aerospace Engineering,
University of Strathclyde, Glasgow G1 1XJ, UK
(Dated: Revised manuscript received 5 August 2015; accepted 20 August 2015; published 11 September 2015)

Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various
industrial processes, but its effects are not considered in many existing multiphase flow simulations
due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is de-
veloped to simulate the contact-line dynamics with consideration of the contact angle hysteresis
for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is
described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted
to increase numerical stability and suppress unphysical spurious currents at the contact line. The
contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and
Spelt, J. Fluid Mech. 599, 341 (2008)], and the geometrical wetting boundary condition is enforced
to obtain the desired contact angle. This method is first validated by simulations of static contact
angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate
the dynamic behavior of a droplet on a non-ideal (inhomogeneous) surface subject to a simple shear
flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes
of the droplet quantitatively agree well with the previous numerical results. Four typical motion
modes of contact points, as observed in a recent study, are qualitatively reproduced with varying
advancing and receding contact angles. The viscosity ratio is found to have a notable impact on
the droplet deformation, breakup and the hysteresis behavior. Finally, this method is extended to
simulate the droplet breakup in a microfluidic T-junction, with one half of the wall surface ideal
and the other half non-ideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks
up into two daughter droplets with the smaller one in the non-ideal branch channel, and the be-
havior of daughter droplets are significantly different in both branch channels. Also, it is found
that the contact angle hysteresis is strengthened with decreasing the viscosity ratio, leading to an
earlier droplet breakup and a decrease in the maximum length that the droplet can reach before
the breakup. These simulation results manifest that the present multiphase LBM can be a useful
substitute to Ba et al. [Ba et al., Phys. Rev. E 88, 043306 (2013)] for modeling the contact angle
hysteresis, and it can be easily implemented with higher computational efficiency.

I. INTRODUCTION

The motion of droplets adhering to a solid surface is encountered in a wealth of natural and industrial processes
such as dewdrops rolling on the leaves, inkjet printing, spray coating, enhanced oil recovery, and droplet-based
microfluidics [1]. In these processes, the contact-line dynamics plays an important role in the determination of droplet
behavior. Owing to its importance, the contact-line dynamics has been a long-standing subject of intensive theoretical
and experimental study [1-5]. However, the contact-line dynamics is still a challenging problem that has not been
fully addressed. This is partially due to the interplay of phenomena occurring over a wide range of length scales
ranging from the macrosize down to the intermolecular distance.

Computational methods have emerged as promising options to describe the contact-line dynamics, and they include
two major types: molecular dynamics (MD) simulations and macroscopic hydrodynamic approaches. In MD, one
computes the motion of many individual molecules and their interactions [6]. The macroscopic flow properties can be
obtained by an averaging process. MD provides an explicit avenue for studying the effect of solid surface properties
and fluid-solid interactions [7-9]. Despite its advantages, MD calculations are extremely computationally demanding
and difficult to apply at a large scale. The macroscopic hydrodynamics approaches such as volume-of-fluid [10, 11] and
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level-set [12, 13] methods are mostly used for simulating multiphase flows with contact-line dynamics, but they require
interface reconstruction or reinitialization to represent/correct the interface, which may be complex or unphysical.
Moreover, an empirical slip model with slip length at the molecular scale has to be introduced in these methods to
avoid stress singularities at the moving contact line [14]. Microscopically, the interface between different phases and
the contact-line dynamics on the solid surface are due to interparticle interactions [15]. Thus, mesoscopic level models
may be better suited to describe the complex dynamic behavior of the contact-line motion.

The lattice Boltzmann method (LBM), as a mesoscopic method, has been developed into an alternative to macro-
scopic hydrodynamic approaches for simulating complex fluid flow problems [16, 17]. Tt is a pseudo-molecular method
based on particle distribution functions that performs microscopic operations with mesoscopic kinetic equations and
reproduces macroscopic behavior. The LBM has several advantages over the conventional Navier-Stokes (NS) solver
such as the ability to be programmed on parallel computers and the ease in dealing with complex boundaries [18].
Besides, its kinetic nature provides many of the advantages of molecular dynamics, making the LBM particular-
ly useful for simulating multiphase, multicomponent flows. A number of multiphase, multicomponent models have
been proposed in the LBM community, which can be classified into four main categories: color-fluid model [19-22],
phase-field-based model [23-25], interparticle-potential model [26-28], and mean-field theory model [29]. For a com-
prehensive review of these models, interested readers may refer to Refs. [18, 30]. Among these models, the color-fluid
model was extensively used to simulate immiscible multiphase flow problems [31-33] because of its advantages such
as low spurious currents, high numerical accuracy and strict mass conservation for each fluid. In particular, it has
been extended recently to model the contact-line dynamics with the contact angle hysteresis [34], which is essentially
inherent to contact-line motion. In this model, the color-conserving wetting boundary condition [35] was applied to
describe the dynamic evolution of the contact line, and a modified numerical algorithm originally proposed in the
VOF-based method [36] was presented to account for the contact angle hysteresis. This model is effective and accurate
in modeling the contact angle hysteresis, but its implementations are extremely complicated and it suffers from the
difficulty of handling complex boundaries.

The contact angle hysteresis is the difference between the advancing and receding contact angles and is used
to characterize surface roughness and/or surface heterogeneity. The contact angle hysteresis is important to the
understanding of droplet motion and to controlling further droplet dynamical behavior on a solid surface. In this
work, we present a color-fluid LBM for the simulation of contact angle and its hysteresis behavior, with an emphasis
on the capability of simulating binary fluids with large viscosity difference/ratio. The immiscible two-phase flows are
modeled after the work of Halliday et al. [20] except that the original BGK collision operator is replaced by its multiple-
relaxation-time (MRT) counterpart in order to minimize spurious currents and increase the numerical stability of the
model at large viscosity ratio [37-39]. To alleviate the complexity and difficulty associated to the previous model,
the contact angle hysteresis is incorporated into the LBM by using the strategy of Ding and Spelt [40], in which
the desired contact angle is enforced through the geometrical formulation proposed in Ref. [41]. The capability and
accuracy of this method are tested by several typical flow cases, including simulations of static contact angle, dynamic
capillary intrusion process on an ideal surface, the dynamic behavior of a droplet on a non-ideal surface subjected to
a shear flow, and the asymmetric droplet breakup caused by contact angle hysteresis at a T-junction.

II. METHODOLOGY
A. Lattice Boltzmann color-fluid model for immiscible two-phase flow

The immiscible two-phase flow is modeled through a MRT color-fluid model, which is developed on the basis of
the work by Halliday and his coworkers [20, 42, 43]. In this model, red and blue distribution functions f# and fF
are introduced to represent two different fluids. The total distribution function is defined by fi = f£ + f£, which
undergoes a collision step as

@) = fi(@,1) + Qi@ t) + F, (1)

where f;(#,t) is the total distribution function in the i-th velocity direction at the position # and time t, fZT is the
post-collision distribution function, €2; is the collision operator, and Fj is the forcing term. Instead of using the BGK
approximation as reported in Refs. [20, 34, 44], the MRT model is adopted for the collision operator, which is given
by [45, 46]

Qi(Z,1) = —(M'SM)y; [f5(&, 1) — f{(Z,1)] (2)
where f{? is the equilibrium distribution functions of f;, M is a transformation matrix, and S is a diagonal relaxation
matrix. The equilibrium distribution function is obtained by a second order Taylor expansion of Maxwell-Boltzmann



distribution with respect to the local fluid velocity u:
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where p = pr + pp is the total density with the subscripts ‘R’ and ‘B’ referring to the red and blue fluids respectively;
¢s is the speed of sound; €; is the lattice velocity in the i-th direction; and w; is the weight factor. For the two-
dimensional 9-velocity (D2Q9) model [47], €; is defined as &y = (0,0), €13 = (£¢,0), €24 = (0, £¢), &,7 = (£c, £e),
and €s 5 = (F¢, £c¢), where ¢ = 0,/ = V3¢, with 6, being the lattice spacing and &, being the time step; w; is given
by wo =4/9, wi_4 =1/9 and ws_g = 1/36.

The forcing term contributes to the mixed interfacial regions and generates an interfacial tension. In the MRT
framework, the forcing term reads as [48]

F=M"! (I — %s) MF, (4)

where I is a 9 x 9 unit matrix, F = [Fy, F1, Fy, ..., Fz]T, and F = [Fy, Fy, Fb, ..., Fy| is given by
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In the above equation, Fisthe body force, which is responsible for producing the local stress jump across the interface.
Based on the continuum surface force (CSF) model of Brackbill et. al [49], the body force can be expressed as [42]
1

ﬁ(fa t) = _§Uﬁva7 (6)

where ¢ is an interfacial tension parameter, p” is the phase field defined by
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and x is the local interface curvature, which is calculated by

k=—[I-n®@n) -V]-i=-V-i, (8)
where 77 is the unit normal vector defined by 77 = —%.

According to the previous studies, e.g. Refs. [50, 51], the local fluid velocity should be defined to incorporate the
spatially varying body force, i.e.,

pi(Z,t) = Z fi( @, 1) + %ﬁ(f, LI (9)

The transformation matrix M is constructed by the Gram-Schmidt orthogonalization procedure from the discrete
velocity set, and is given explicitly by [45]

(ol 1 1 1 1 111 1 1
(e —4 -1 -1-1-12 2 2 2
(e 4 —2 -2 -2-211 1 1
(je| 01 0 -1 0 1-1-11
M=| (@ |=| 0 -20 2 01-1-11 ], (10)
(jy| 00 1 0 -111 -1 -1
(qy] 00 -20 211 —1-1
(Pac 0 1 -1 1 -100 0 0
(Payl 00 0 0 0 1-11 -1

where the Dirac notation of bra (-| symbolizes the 9-dimensional row vector. Note that the row vectors of M are
orthogonal to each other but they are not normalized. With the transformation matrix M, the particle distribution
function f; can be projected onto the moment space through m; = M;; f;, and the resulting nine moments are

m = (m07 mi,..., mS)T = (pa 6757j;p, qw7jy7 Qyupwwupwy)T 5 (11)



where e and ¢ are related to the total energy and the energy square, j, and j, are the z- and y-components of the
momentum, i.e. j; = pu, and j, = puy, ¢, and g, are the z- and y-components of the energy flux, and p,, and
Dzy are related to the symmetric and traceless components of the stress tensor, respectively. The diagonal relaxation
matrix S is defined as

S:diag[80781782783784785786787788]7 (12)

where the elements s; are the relaxation rates associated with each f;. The parameters sg, s3 and s5 correspond to the
conserved moments (i.e., p, j, and j,) and have no effect on the derivation of the NS equations [52]. For simplicity,
we choose sg = s3 = s5 = 1. s1 determines the bulk viscosity ¢ through

o= (5 -3) (13)

and it is considered as an adjustable parameter since the binary fluids are incompressible. s; and sg are related to
the kinematic viscosity v by

5725821, and v = (7’—1> 25, (14)
T 2

Besides, symmetry requires that s4 = sg. Consequently, three independent parameters s1, so and s4(= sg) can be
freely adjusted to enhance the stability of MRT model [46, 48, 53, 54]. Following the guidelines and suggestions in
Ref. [45], we choose these free parameters as s; = 1.63, so = 1.14, and s4 = sg = 1.92 in this study. It was also
demonstrated that such a choice can effectively suppress unphysical spurious currents in the vicinity of the contact
line, resulting in an increased numerical accuracy in simulating contact angles [39)].

Using the Chapman-Enskog multiscale analysis, Eq. (1) can be reduced to the NS equations in the low frequency,
long wavelength limit with Eqgs. (2)-(5). The resulting equations are

op+ V- (pu) =0, (15)

Oy (pit) + V - (piit) = =Vp+V - [w(Vii + V@) + F, (16)

where p = pc? is the pressure, and u = pv is the dynamic viscosity of the fluid mixture. In this study, the pure red
and blue fluids are assumed to have equal densities, i.e., pr = pp. To allow for unequal viscosities of the two fluids,
we determine the viscosity of the fluid mixture by a harmonic mean [33, 55]:

1 1+pN+1—pN
uw(pN)  2pg 2up

, (17)

where py, (k= R or B) is the dynamic viscosity of fluid &, which is related to the kinematic viscosity vi by pur = prvi.
In the present diffuse-interface model, the choice of Eq. (17) can ensure a constant viscous stress across the interface,
which can be explained as follows. Consider a horizontal interface in the x-y plane that separates the red and blue
fluids on both sides. The viscous stress reads as udyu, [55], which should be a constant across the interface based on
a force balance. Note that the velocity gradient d,u, is variable across the interface when both fluids have unequal
viscosities. We define (0,u;)r and (Oyuy)p as the velocity gradients on the red and blue fluid sides, respectively.
Besides, we simply take the velocity gradient at the interface as HQP " (Oyug)r + 172p i (Oyug)p by assuming that the

velocity gradient varies linearly with the local phase field. A constant viscous stress across the interface requires
i [HQ”N (Oyuz)r + 1_2pN (8yux)3} = pr(Oyus)r = 1B(dyus)p, which can easily lead to Eq. (17). It is worth noting
that the harmonic mean was also used for the interface viscosity to ensure the continuity of viscous stress in the
sharp-interface models [56, 57].

The partial derivatives required for the curvature and normal vector calculations are obtained using the 9-point

compact finite-difference stencil. For example, for a variable v, its partial derivatives can be evaluated by [22]

(s
gx(x) - j?Zwiw(ﬂ €i01)€ia- -

Although the forcing term generates an interfacial tension, it does not guarantee the immiscibility of both fluids.
To promote phase segregation and maintain the interface, we use the recoloring algorithm proposed by Latva-Kokko



and Rothman [58], which helps further reduce spurious currents at the interface and overcome the lattice pinning
problem arising in the original recoloring algorithm of Gunstensen et al. [19]. Following Latva-Kokko and Rothman,
the recolored distribution functions of the red and blue fluids are [58]

- R — RFPB
FR@E 1) = LR 1@ t) + BEELE wy, cos(gi) e,
14 1Y (19)

K2

— B — RFPB
f-%,t):% T(m)—ﬂ”p” w; cos(pi e,

where 3 is the segregation parameter and is set to be 0.7 for numerical stability and model accuracy [22, 31, 43]; ¢;
is the angle between the phase field gradient and the lattice vector €;, which is defined by

& - VpN

GV 20
EZal (20)

cos(;)

After the recoloring step, the distribution functions propagate to the neighbouring lattice nodes, known as propa-
gation or streaming step:

fE@&+ et +6:) = fF(#,t), k=RorB (21)

with the post-propagation distribution functions being used to calculate the densities of both fluids by pF = > fk.

B. Wetting boundary condition

As for the color-fluid LBM, we have recently developed a wetting boundary condition to model fluid-surface in-
teractions [34]. Our wetting boundary condition consists of three parts: (1) a contact angle model that enforces the
specified contact angle at the solid wall, (2) a color-conserving boundary closure scheme that solves the post-collision
distribution functions by enforcing no-slip boundary condition and mass conservation for each fluid, and (3) a variant
of recoloring algorithm that is designed to maintain the reasonable interface at the solid wall. It has been numerically
demonstrated to be capable of modeling the contact-line dynamics with high accuracy and low spurious currents.
However, its implementation is relatively complex and it is hard to be extended for complex boundaries. In this
work, the wetting boundary condition is implemented in a much simpler manner, as described previously by Huang
et al. [59] for phase-field-based LBM simulations.

No-slip boundary condition is applied at the solid wall by using the halfway bounce-back scheme [60], where the
wall is located halfway between the fluid node and solid node. Following our previous work [34, 61], the contact angle
0 is enforced at the wall through the geometrical formulation proposed by Ding and Spelt [41], i.e.,

Tlw - Vp~ = =04t - VoV | (22)

with
©,, = tan (g - 9) , (23)
where 7i,, is the unit normal vector to wall pointing towards the fluids, and #,, is the unit vector tangential to wall.
The enforcement of Eq. (22) is realized through the external solid nodes (also termed as ghost nodes), which are a half

lattice spacing away from the wall. Without losing generality, we consider the case of bottom wall, whose neighboring
solid and fluid nodes are located at y = 0 and y = 1, respectively. Upon discretization of Eq. (22), one has

pfn\{O = pi\fl + 6w|t_’w : VPN|6:57 (24)
where the tangential component of Vp» on the wall is determined by the following extrapolation scheme [59]:
tw - VN =158,p"|, | =050V, (25)

In Eq. (25), the derivatives on the right-hand side can be easily evaluated by the second-order central difference
approximation. Once the value of the phase field pi\f o is obtained, the partial derivatives of p’¥, appearing in Eqgs. (6),
at all the fluid nodes can be calculated uniformly by Eq. (18). Thus, the contact angle is implicitly imposed by the
gradient of phase field at the fluid nodes adjacent to the wall.



C. Contact angle hysteresis model

The wetting boundary condition given in Subsect. IIB is suited only for ideal (i.e., rigid, smooth, and chemically
homogeneous) solid surfaces with a prescribed contact angle. However, most practical surfaces are rough and het-
erogeneous to some extent, and the contact angle hysteresis can play a crucial role, e.g. the contact angle hysteresis
allows a droplet to be held on a tilted plane and resists the gravity. The contact angle hysteresis is known as a
phenomenon in which the contact line remains fixed at a given position, provided that the local contact angle 6 lies
within the window of [36, 40, 62]

Or <0< 04, (26)

where 04 and 0 denote the advancing and receding angles, respectively. On the other hand, if € is beyond the
hysteresis window, the contact line will move with the moving direction depending on the relative magnitude of 6,
04 and Or. Specifically, if & > 64, the contact line moves forward; if § < 6p, the contact line moves backward. To
realize the effect of hysteresis, serval numerical strategies have been developed based on the macroscopic multiphase
approaches and LBMs [34, 36, 40, 59, 63, 64]. In the present color-fluid LBM, we follow the strategy originally
proposed by Ding and Spelt [40] due to its ease in implementation, which can be described as follows. At each time
step of simulation, we first keep the values of pi\{ o unchanged for all solid nodes (taken from the last time step), and
obtain an initial estimate of the local contact angle, 6y, by the use of Egs. (22) and (23). Then, pi\f o is determined by
comparing 6y with 64 and 0g: if g > 64, then set 6 = 04 and update pi\fo through Egs. (24) and (25); if 6y < 0g,
then set 6 = 0 and update pl, through Egs. (24) and (25); otherwise, we let pY, unchanged.

Note that we here implement the contact angle hysteresis with a given hysteresis window. Due to the microscopic
origin of hysteresis, actually, the hysteresis window is determined by the properties of the solid surface in contact with
the droplet such as surface roughness and nonuniformity [2, 65]. Microscopically, there have been a number of recent
works revealing the importance of the contact angle hysteresis and dynamic contact angle [66-68], but the study of
the contact angle hysteresis from a viewpoint of microscale is beyond the scope of this work.

III. RESULTS AND DISCUSSION
A. Droplet deposited on an ideal substrate with prescribed contact angles

First, we investigate the equilibrium shapes of a droplet on an ideal substrate to examine the model’s capability in
simulating prescribed contact angles. Simulations are performed in a 240 x 160 lattice domain, and a semi-circular
droplet (red fluid) with the radius R = 32 is initially deposited on the bottom wall. The periodic boundary condition
is used in the z-direction while the wetting boundary condition, which is given in Subsection II B, is imposed at the
top and bottom walls in the y-direction. It is known that most existing multiphase/multicomponent LBMs would
suffer from numerical instability when the binary fluids have large kinematic viscosity ratio [69]. For instance, the
kinematic viscosity ratio is restricted to typically less than 6 in the most-used interparticle-potential LBM [70]. To
check whether this also happens to the present model, two different kinematic viscosity ratios (M = vgr/vp) are
investigated: (a) M = 1 with vg = vp = 0.35, and (b) M = 100 with v = 0.35 and vp = 0.0035. The other
parameters are fixed as pg = pp = 1 and o = 0.02. The velocity and density fields are initialized as © = 0 and

PR =Pr, p =0 if (z—120)2+ (y —0.5)? < R?; (27)
pr =0, pp=pp  otherwise.

Based on these velocity and density fields, one can determine the initial distribution functions by their equilibrium
values, ie. f; = f{% and fF = pR’jpr fi% for k = R or B. Each simulation is run until the shape of droplet
does not change, i.e., reaching an equilibrium state. Different contact angles can be achieved through adjusting the
dimensionless parameter ., according to Eq. (22). Fig. 1 shows equilibrium shapes of the droplet with ©,, = /3,
0 and —/3 for the viscosity ratio M = 100. Their corresponding equilibrium contact angles, calculated from the
measured droplet height and base diameter, are 29.68°, 89.96° and 152.68°, respectively. The simulated equilibrium
contact angle (6¢9) as a function of ©,, for M =1 and M = 100 is presented in Fig. 2. As expected, the simulations
are stable in the entire range of contact angles from 30° to 150° for both M = 1 and M = 100. Also, it is clearly
observed that the simulation results are independent of the viscosity ratio, in good agreement with the theoretical
solution, i.e., Eq. (23). A numerical artifact observed in many numerical methods is the presence of spurious velocities
at the phase interface. This is also true in our case. Table I shows the maximum spurious velocities (]@|maqz) at various
64 for M = 1 and 100, where the values of |i],,q, are magnified by 10* times. For all of the considered contact angles




FIG. 1: (Color online) Equilibrium droplet shapes obtained through adjusting the dimensionless parameter ©,, for M = 100.
The values of ©,, are taken as v/3, 0, and —v/3 along the direction of arrow.

180
- A LBM (M=1)
i o) LBM (M=100)
150 Theory
120
% oof
60}
30}
| L 1 1 I
O-2 -1 0 1 2
eW

FIG. 2: Contact angle as a function of O, for the viscosity ratios M = 1 (represented by triangles) and 100 (represented by
circles). The solid line represents the theoretical predictions by Eq. (23).

at M = 1, the maximum spurious velocities are on the order of 10~* or even smaller, comparable to those produced
by the color-fluid model that used the wetting boundary condition of Ba et al. [61]. It is also seen in Table I that the
maximum spurious velocities increase with the viscosity ratio, but most of them are still on the order of 10~ for the
viscosity ratio as high as 100.

B. Capillary intrusion

Capillary intrusion, which originated from the pioneering work of Washburn [71], offers a good benchmarking
example for assessing whether a multiphase model is able to simulate moving contact line problems. The velocity of
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FIG. 3: Simulation setup for capillary intrusion. The portion in the center of the domain is a capillary tube of length L and
width . The intruding fluid is wetting with respect to the tube while the defending fluid is non-wetting.

a wetting fluid column intruding a horizontal capillary tube with ideal surfaces, as shown in Fig. 3, is determined
by the balance between the pressure difference over the interface, the Laplace pressure, and the viscous drag of the
intruding fluid. If the gravity and inertial effects are neglected, this balance can be expressed as [72, 73]

dg

® line + (L €)%,

ocos(f) = . (28)
where 6 is the contact angle, r is the width of capillary tube , £ is the position of the moving interface with £ = 0 at the
inlet of capillary tube, and ugr and pp are the dynamic viscosities of the red (wetting) and blue (non-wetting) fluids,
respectively. In the analytical derivation, 6 is specified as a wall boundary condition. However, for comparison with
simulations or experiments, 6 is better taken as the dynamic contact angle [72, 73]. The system consists of a 400 x 35
lattice domain with periodic boundary conditions used in the z-direction. In the middle portion, i.e. 100 < x < 300,
the boundaries of the capillary tube are no-slip and wetting with Eq. (22) imposed on them. The length of the
capillary tube is taken as L = 200 lattices. Outside of the middle portion, the boundary conditions are periodic
in the y-direction, mimicking an “infinite reservoir”. The simulations are run with the parameters pr = pp = 1,
o =5x1072 and r = 21 for two different viscosity ratios: (a) M = 1 and (b) M = 100. The dimensionless parameter
©,, is chosen as 1.0 to represent hydrophilic capillary tube for the intruding red fluid. In the fluid domain, the blue
fluid is initialized at the position 120 < z < 375, and the remaining lattice sites are filled with red fluid. f;, fiR
and fB are then initialized using the zero velocity equilibrium distribution functions. Fig. 4 shows the comparison
between our simulation results and the analytical predictions from Eq. (28) for M = 1 and 100. Note that Eq. (28)
is plotted using the dynamic contact angle, measured from our simulations. For M = 1 and M = 100, the measured
dynamic contact angles are respectively § = 46.84° and 47.11°, which are very close but slightly deviate from their
prescribed value 45°. It can be seen that the present color-fluid LBM can predict Eq. (28) pretty well for a broad
range of viscosity ratios.

C. Droplet on a non-ideal substrate subject to a shear flow

A droplet attached on a nonideal substrate subject to a shear flow is investigated to test the hysteresis behavior
of contact angle. We first simulate a droplet pinned on the solid surface due to a large hysteresis window, and the
obtained results are compared with the previous numerical results. Then we investigate the influence of hysteresis
window and viscosity ratio on droplet behavior at a fixed capillary number.

First, we follow the previous studies [36, 59, 64] and consider the deformation of a droplet on a non-ideal wall with
contact angle hysteresis in a shear flow. This test aims to verify if the contact angle hysteresis is correctly incorporated
in our color-fluid LBM. As shown in Fig. 5, the two walls are separated by a distance H. The bottom wall is kept
stationary, and the top wall moves towards the right with a constant velocity u,,. Periodic boundary conditions are
applied in the horizontal direction. Both fluids have the same density and viscosity, which are given by pr = pp =
1, and vg = v = 0.2, respectively. The interfacial tension is set to be o = 5 x 1073, Initially, a droplet of circular
segment (red fluid) with the radius Ry and contact angle § = 60° is deposited on the bottom wall. Note that one
needs to initially specify the phase field of the ghost nodes, i.e. plz\f 0, when the contact angle hysteresis is considered.
plz\f o may keep unchanged and can affect the accuracy of numerical simulations, for example, when the contact lines
(or points in 2D) remain pinned. Therefore, the initial values of the phase field must be correctly assigned. In order
to minimize spurious velocities caused by the non-smoothness/discontinuity in the phase field, we run the simulation
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FIG. 4: (Color online) The length of the column of the intruding fluid, £(¢), versus time for the viscosity ratios of (a) M =1
and (b) M = 100. The (red) open circles represent the simulation results of LBM and the (blue) solid lines are the theoretical
predictions from Eq. (28).
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FIG. 5: Schematic diagram of a droplet meniscus on a non-ideal substrate subject to a simple shear flow.

with stationary walls (by setting u,, = 0 as well) and the constant contact angle of 60° until reaching the steady

state, and then assign the steady-state phase field as the initial phase field of the hysteresis simulation. According

14N ()
2

to the initial phase field p™(Z), the initial values of the fluid densities are determined by pgr(Z) = and

pB(Z) = LN(:E), and the distribution functions fi, f£ and fZ can be initialized using their corresponding zero
velocity equilibrium distributions. The problem is characterized by two important parameters: the scaled droplet
area, defined by A% = 4A4,/H? with A, being the droplet area, and the capillary number Ca = ppu, E /(0 H), where
E is the initial height of the droplet. We perform the simulations in a L x H = 500 x 250 lattice domain for C'a = 0.05,
0.1, and 0.15 at a constant A = 0.5. A large hysteresis window (fr,64) = (5°,175°) [59] is imposed through the
strategy given in Subsection II C so that the droplet remains pinned on the bottom wall. This allows us to compare
our results with those obtained by Schleizer and Bonnecaze [74], where a boundary element method was used.

Fig. 6 compares the simulated equilibrium droplet shapes with the numerical results of Schleizer and Bonnecaze [74]
for Ca = 0.05, 0.1, and 0.15 at A} = 0.5. As Ca increases, the droplet deforms more significantly, and the difference
between the downstream and upstream contact angles increases. For all of the capillary numbers, the simulated
droplet shapes (represented by solid lines) agree well with the results of Schleizer and Bonnecaze (represented by
dashed lines), revealing good accuracy of the present model for handling contact angle hysteresis.

Next, we investigate the deformation, breakup and migration of the droplet for different hysteresis windows at a
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FIG. 6: Comparison of the simulated equilibrium droplet shapes with the numerical results of Schleizer and Bonnecaze [74]
for Ca = 0.05, 0.1, and 0.15 at A}; = 0.5. The solid lines are the present LBM simulation results, while the dashed lines are
the results of Schleizer and Bonnecaze. The z- and y-coordinates relative to the center of computational domain (zo,yo) are
normalized by Ro.

fixed capillary number and viscosity ratio. A semicircular droplet of radius Ry = 64 is initially placed on the bottom
wall in a 1024 x 128 lattice domain. Both fluids are assumed to have equal density and kinematic viscosity, i.e.,
pr = pp = 1 and vg = v = 0.25, and the interfacial tension is set as ¢ = 1073. We use the same initialization
strategy and boundary conditions described above (except that the initial contact angle § = 90°), and choose the
moving velocity of the top wall u,, = 2.56 x 1073 such that Ca = 0.32 and Re = u,,R3/(Hvg) = 0.328. Besides, the
hysteresis windows are chosen as (0°,180°), (0°,110°), (70°,180°), and (70°,110°), which have been used recently by
Wang et al. [64] for qualitatively testing their model.

Fig. 7 shows the snapshots of droplet motion for the hysteresis windows of (0°,180°), (0°,110°), (70°,180°), and
(70°,110°) at M = 1 and Ca = 0.32, where the dimensionless time is defined as t* = ¢ with the shear rate v = w,,/H.
In the early stages, the droplet deforms and/or moves downstream on the bottom wall. As expected, one can observe
four typical motion modes of the contact points (note that we use the contact point instead of the contact line in two-
dimensional problems) due to four hysteresis windows. For (6g,64) = (0°,180°), both the upstream and downstream
contact angles cannot go outside of the hysteresis window, so both contact points always remain motionless on the
solid surface. For (0r,04) = (0°,110°), due to strong shear stresses from the carrier fluid the upstream contact
angle is decreased from the right angle to acute angles, which are obviously in the range (0°,110°), so the upstream
contact point remains fixed. For the downstream contact point, it is pinned initially when the instantaneous contact
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FIG. 7: Snapshots of droplet motion for the hysteresis windows of (0°,180°), (0°,110°), (70°,180°), and (70°,110°) at M =1
and Ca = 0.32. Note that the droplet profiles are represented successively by the dashed lines, dash-dot lines and dash-dot-dot
lines at the final three instants after the breakup or detachment from the wall.

angle is less than 110°, and later it moves downstream as long as the contact angle becomes larger than 110°. For
(Or,04) = (70°,180°), the downstream contact angle keeps increasing continuously, but it stays in the range of
hysteresis window at all times, resulting in the downstream contact point immobilized. For the upstream contact
point, during the initial short time (typically when ~¢ < 1) it is pinned because the instantaneous contact angle is
larger than 70°, and later it progresses downstream along the surface when the contact angle is less than 70°. For
(0r,04) = (70°,110°), the droplet keeps pinned and deforms continuously until the upstream and downstream contact
angles reach their hysteresis limits, and then starts to slip over the wall. These results are in qualitative agreement
with the previous computations of Wang et al. [64], which is built upon the mean-field theory model. As the droplet
deforms and/or the contact points (which might be the upstream contact point only, the downstream contact point
only, or both) progress downstream further, one can observe two different dynamical behaviors of droplet in the late
stages. Specifically, if (6r,04) = (70°,180°), the droplet departs entirely from the solid surface and finally moves
at a constant velocity in the carrier fluid free of wetting effects; otherwise, the droplet breaks up into two separate
parts: one moves fast as it breaks away from the solid surface, while the other adheres to the solid surface with
its shape, size and motion state depending on the hysteresis window. Clearly, the adhering part eventually remains
immobilized for (Or,04) = (0°,180°) and (0°,110°), but slides over the surface at a constant, relatively low velocity
for (Or,04) = (70°,110°).

In addition, we also simulate the deformation, breakup and migration of the droplet at various hysteresis windows
for the viscosity ratio of 0.01, and the obtained results will be compared with the case of M =1 (see Fig. 7) to show
the influence of viscosity ratio on the hysteresis behavior. All the simulation parameters are kept the same as in
the case of M = 1 except that the viscosity of the dispersed phase (red fluid) is changed to be vg = 0.0025. Fig. 8
illustrates the time evolution of droplet shapes for the hysteresis windows of (0°,180°), (0°,110°), (70°,180°), and
(70°,110°) at M = 0.01 and Ca = 0.32. For (Ar,04) = (0°,180°), both the upstream and downstream contact points
remains pinned on the bottom wall at all times. From its initial semi-circular shape, the droplet gradually deforms
and finally reaches a stationary shape (represented by the red bold lines in Fig. 8(a)). In contrast, for M = 1 the
droplet continuously deforms and eventually breaks up into two parts, one of which remains pinned on the bottom
wall forever and the other moves downstream in the carrier fluid (see Fig. 7(a)). For (0r,04) = (0°,110°), the
upstream contact point cannot move due to the corresponding contact angle always within the hysteresis window.
The downstream contact point evolves in a relatively complex manner: first, it is pinned; then, it moves downstream
as the instantaneous contact angle is larger than 110°; finally, it is pinned again and the entire droplet reaches a
steady state. This behavior is evidently different from the previous observation that the downstream contact point
first undergoes a short “pinning” process, and then keeps moving on the wall until the droplet is divided into two
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FIG. 8 (Color Online) Snapshots of droplet motion for the hysteresis windows of (0°,180°), (0°,110°), (70°,180°), and
(70°,110°) at M = 0.01 and Ca = 0.32. In (a) and (b), the droplet profiles in the steady state are represented by the (red)
bold lines, while in (c) the droplet profiles are represented successively by the dashed lines, dash-dot lines and dash-dot-dot
lines at the final three instants after the detachment from the wall.

(a)

(x-x, /R,

FIG. 9: (Color Online) Snapshots of droplet motion in the coarse and fine grids for the hysteresis windows of (a) (0°,110°) and
(b) (70°,110°) at M = 0.01 and Ca = 0.32. Note that the droplet profiles in the coarse and fine grids are shown by the black
solid lines and the red dashed lines, respectively. The z- and y-coordinates relative to the center of computational domain
(z0,y0) are normalized by Rpo.

.I"

small ones, as illustrated in Fig. 7(b). For (6r,04) = (70°,180°), the droplet motion (including the motion of both
contact points) exhibits similar behavior to those observed in the case of M = 1; nevertheless, there exists quantitative
difference in the droplet shape and terminal velocity, as well as the velocity of moving contact point for both M = 0.01
and M = 1. For (Ag,04) = (70°,110°), in the early stages the motion of contact points is analogous to the previous
observation of M = 1; whereas in the late stages the droplet reaches a steady shape and slides over the bottom wall
at a constant velocity, differing significantly from the pinch-off behavior observed in the case of M = 1. Thus, it can
be concluded that the viscosity ratio plays an extremely important role in determining the dynamical behavior of a
droplet when the contact angle hysteresis is taken into account.

Grid convergence, also known as grid independence, is investigated by comparing the simulation results in the
coarse and fine grids, which have dimensions 1024 x 128 and 2048 x 256, respectively. Two representative cases are
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FIG. 10: (Color online) The velocity vectors and streamlines around the droplet for (a) (6r,04) = (0°,110°) in the steady
state and (b) (r,04) = (70°,110°) at y¢ = 34 in the computational domain of 1024 x 128 grids. Note that the droplet profiles
are represented by the red dashed lines, and the z- and y-coordinates relative to the center of computational domain (xo,yo)

are normalized by Ry.

simulated: one with the hysteresis window of (0°,110°), and the other with (70°,110°). Both cases have the same
viscosity ratio, capillary number and Reynolds number, i.e., M = 0.01, Ca = 0.32 and Re = 0.328. Fig. 9 gives
the comparison of simulation results between the coarse grid and the fine grid for (a) (0g,04) = (0°,110°) and (b)
(0r,04) = (70°,110°). Note in Fig. 9 that the simulation results in the coarse grid have been plotted previously in
Fig. 8(b) and (d). It is clearly seen that the grid refinement only has a slight effect on the simulation results, indicating
that the coarse grid with the domain size of 1024 x 128 grids can provide acceptable numerical accuracy. Since the
interface thickness decreases with the grid refinement, the slight effect of the grid refinement on the simulation results
also indicates that a further decrease in the interface thickness almost has no effect on the simulation results, i.e.
approaching the sharp-interface limit. Fig. 10(a) and (b) depict the velocity vectors and streamlines around the droplet
interface in the coarse grid for (0g,04) = (0°,110°) in the steady state and for (6r,04) = (70°,110°) at ¢t = 34. For
(0r,04) = (0°,110°), we can observe that two unequal-sized vortices are fully filled with the droplet inside, implying
that there is not momentum exchange between the droplet and the carrier fluid; whereas for (6g,04) = (70°,110°),
some streamlines can pass through the droplet interface, suggesting that there exists momentum exchange between
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FIG. 11: (Color Online) Schematic of T-junction geometry.

the droplet and the carrier fluid. These behaviors of streamlines are consistent with the motion of droplet over the
solid surface. Also, we do not see unexpected vortices or weird variations of velocity in the vicinity of interface, in
particular around the contact points, indicating that unphysical spurious velocities are effectively suppressed in the
present LBM even when the contact angle hysteresis is considered.

D. Droplet breakup process at a microfluidic T-junction

As stated above, the color-fluid model proposed by Ba et al. [34] suffers from the difficulty of handling contact line
dynamics with complex solid boundaries. In order to demonstrate that such a difficulty can be greatly overcome in
the present model, we use it to simulate the droplet breakup process at a microfluidic T-junction, where the convex
corner is also encountered in addition to the straight walls. We consider a red droplet of initial length Ly = 120 that
flows from a channel of width w; = 40 and length [; = 200 into a T-junction with two equal arms of the same width
wg = 40 and length [, = 400 (see Fig. 11). The droplet is carried downstream by the blue fluid, which flows through
the feed branch of the T-junction with the mean velocity U. The channel walls in the right half of the geometry are
ideal with constant contact angle of 135°, while the rest of channel walls are non-ideal with the hysteresis window of
(120°,150°). For the sake of simplicity, both fluids are assumed to have equal densities, i.e. pr = pp = 1, and the
interfacial tension is fixed at 0.02. Considering that the flow in the microchannel is typically laminar, the Reynolds
number (Re = ppUwys/pp) is selected as 0.4 without loss of generality. The capillary number, which describes
the relative importance of viscosity to the interfacial tension and is defined by Ca = Upupg/o, is commonly used to
characterize the droplet breakup process, and its value is 5 x 1073, In this subsection, we will examine whether
and how the contact angle hysteresis and the viscosity ratio influence the dynamics of droplet breakup. A parabolic
velocity profile and a constant pressure are specified respectively, at the inlet and outlets using the non-equilibrium
bounce-back scheme [75]. The no-slip boundary condition is applied at the wall surfaces. For the straight walls,
the surface wettability is introduced directly following the method described in Sects. IIB and II C; whereas for the
convex corners, the following method is adopted to determine p (z,y), where (x,y) represents the solid node most
adjacent to the convex corner:

1. Suppose that (z,y) is the ghost node of the horizontal wall, and use the method described in Sects. IIB and
II C to determine the phase field at this node, denoted by pflv ;

2. Suppose that (z,y) is the ghost node of the vertical wall, and use the method described in Sects. IIB and IIC
to determine the phase field at this node, denoted by p’;

3. Update p™ (z,y) using the average of pf/ and plY, i.e. p™(z,y) = (pf +p)) /2.

We run the simulations at three different viscosity ratios, i.e. M = 3, 1 and 0.1, which are achieved by varying solely
the viscosity of the red fluid. Each simulation is initialized with the density field

prR=pr, pp =0 if 70 <y < 190;

pr =0, pp =pp  otherwise, (29)
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FIG. 12: (Color Online) Snapshots of droplet breakup in the ‘non-ideal’ T-junction for Ca = 5 x 10™* and Re = 0.4 at different
viscosity ratios: (a) M =3, (b) M =1 and (¢) M = 0.1. For the T-junction, the right half walls are assumed to be ideal with
the constant contact angle of 135°, while the remaining walls are non-ideal with the hysteresis window of (120°,150°). The
dimensionless time is defined by t* = Ut/wy. Note that the droplet and carrier fluid are shown in red and blue, respectively.

and zero velocity field everywhere except at the inlet, where the parabolic velocity profile is prescribed. By means of
the density and velocity fields, the initial distribution functions are calculated as f; = f{? and fF = v Y (k=R
or B).

Fig. 12 shows the snapshots of droplet breakup in the T-junction at three different viscosity ratios: (a) M = 3,
(b) M =1 and (c) M = 0.1. Note in Fig. 12 that the dimensionless time is defined by t* = Ut/wys. The droplet
first moves downward and its head touches the bottom wall of the horizontal channel at around t* = 2. Later, the
droplet continues to fill the junction until completely entering the junction at ¢t* = 3.5. During this time, the droplet
invades the left and right branches and advances inside, but the droplet advances more slowly in the left branch due
to the contact angle hysteresis. Soon after t* = 3.5, a bent neck is formed under the squeezing of the carrier fluid
flowing into the T-junction. The span of the bent neck is gradually expanded, and the expansion mainly occurs in
the right branch of the horizontal channel. This suggests that the carrier fluid mostly flows into the right branch
as a result of the interface retardation in the left branch. The droplet eventually pinches off at its minimum width
and is asymmetrically split into two daughter droplets. It is clearly seen that the daughter droplet in the branch
with non-ideal surfaces is smaller than the other one. We interestingly note that, during the entire breakup process
the droplet tips always keep touching with the channel walls, evincing that the horizontal channels are continuously
obstructed by droplets. This is known as breakup with permanent obstruction (POB), which has been observed both
experimentally and numerically in microfluidic T-junctions [76-78].

Even though the obtained results are qualitatively similar for different viscosity ratios, as shown above, there do
exist some quantitative differences in the droplet behavior. For instance, decreasing the viscosity ratio can cause the
droplet to break up earlier and decreases the maximum length that the droplet could reach before the breakup. In
late stages, albeit the daughter droplet in the right branch of the horizontal channel keeps moving towards the right,
the daughter droplet in the left branch exhibits different states of motion. Specifically, at high viscosity ratio, i.e.
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FIG. 13: (Color Online) Snapshots of droplet breakup in the ‘ideal’ T-junction with the contact angle of 135° for M = 1,
Ca =5 x 107 and Re = 0.4. The snapshots are taken at the times: (a) t* = 0, (b) t* = 2, (c) t* = 3.5, (d) t* = 4.5, (e)
t* =8.25, (f) t* = 8.375, (g) t* =9, (h) t* = 13. Note that the droplet and carrier fluid are shown in red and blue, respectively.

M = 3, the daughter droplet keeps migrating through the left branch channel, but at a velocity much lower than the
right one (see t* = 10.25, 11.75 and 13 in Fig. 12(a); at medium and low viscosity ratios, i.e. M = 1 and 0.1, the
daughter droplet gets pinned in the left branch, but its rest position depends on M: the droplet remains ultimately
pinned at a certain distance from the T-junction and at the junction corner for M = 1 and M = 0.1, respectively.
These quantitative differences in the droplet behavior indicate that the contact angle hysteresis can be strengthened
with the decrease of M, consistent with the finding in Subsect. III C. In addition, we also quantify the length of the
daughter droplet (L,) in the right branch channel and find that the values of L, are 73.2, 74.6 and 70.7 for M =3, 1
and 0.1, respectively. Obviously, L, varies non-monotonously with the decrease of viscosity ratio, but the variations
are not so noticeable in the cases under consideration.

Finally, we simulate the droplet breakup process at the T-junction with all the parameters unchanged except for
the hysteresis window which is now (135°,135°). Such a hysteresis window implies that the entire channel walls are
ideal with a constant contact angle of 135°. Fig. 13 depicts the snapshots of droplet breakup in the T-junction for
(Or,04) = (135°,135°) at M = 1. Compared to the case of (0r,04) = (120°,150°) (see Fig. 12(b)), the droplet
pinches off at an earlier time, i.e. t* = 8.375, and the maximum length that the droplet can reach before the
pinch-off is smaller: specifically, the values of the maximum length are 306 and 337 for (Ag,04) = (135°,135°) and
(120°,150°), respectively. Due to the symmetry of the channel geometry and the imposed surface wettability, the
droplet symmetrically moves and deforms, eventually breaking up into two equal-sized daughter droplets. The two
daughter droplets then move at the same speed towards the outlets. These droplet behaviors are evidently different
from the previous observations in the case of (0r,04) = (120°,150°), suggesting that the hysteresis window is one of
important factors characterizing the droplet breakup process.

IV. CONCLUSIONS

In this paper, a multiphase LBM is developed to simulate contact-line dynamics, particularly with contact angle
hysteresis, for a broad range of viscosity ratios. In this method, the immiscible two-phase flows are described by
a color-fluid LBM, originally proposed by Halliday and his coworkers [20, 42, 43]. Instead of using the original
BGK approximation, the color-fluid LBM is implemented in the framework of MRT, which can enhance the numerical
stability for solving binary fluids with larger viscosity difference and suppress spurious currents arising at the interface.
The specified hysteresis of contact angle is realized by utilizing the strategy of Ding and Spelt [40], and the resulting
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contact angle is enforced through the geometrical formulation proposed in Ref. [41], with implementation following
Huang et al. [59]. The color-fluid LBM is first validated by simulations of static contact angle and dynamic capillary
intrusion on the ideal surfaces for the viscosity ratios of 1 and 100. It is then used to simulate the dynamic behavior
of a droplet on a non-ideal surface subject to a shear flow. For the droplet pinned on the solid surface due to a
large hysteresis window of contact angles, the predicted shapes of deformed droplet are in good agreement with the
previous numerical results of Schleizer and Bonnecaze [74]. In the early stages (e.g. vt < 6), four typical motion
modes of contact points, which were observed by Wang et al. [64], are qualitatively reproduced by adjusting the
hysteresis windows. In addition, it is found that the viscosity ratio can affect not only the deformation and slipping
velocity of the droplet but also its breakup and hysteresis behavior. To show the model’s capability in dealing with
complex boundaries, we simulate the droplet breakup process in a microfluidic T-junction, where one half of the
channel surface is ideal and the other half is non-ideal. For all of the viscosity ratios, the droplet finally breaks up into
two unequal-sized daughter droplets with the smaller one in the non-ideal branch. However, decreasing the viscosity
ratio can strengthen the effect of contact angle hysteresis, thereby leading to an earlier breakup of the droplet and
a decrease in the maximum length that the droplet can reach before the breakup. Also, the daughter droplet in
the ideal branch always keeps moving towards the outlet, but the daughter droplet in the non-ideal branch either
moves at an extremely low velocity or remains pinned at a position, which strongly depends on the value of viscosity
ratio. In summary, our numerical results indicate that the present color-fluid LBM is numerically stable and accurate
for simulating binary fluids with a wide range of viscosity ratios, no matter whether the contact angle hysteresis is
considered, and also can be easily extended for handling complex geometry.
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