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ABSTRACT 

SBA-2 and STAC-1 are periodic mesoporous silicas with slightly different structures whose pore 

networks consist of spherical cavities interconnected by windows. This feature makes them attractive 

for adsorptive separation processes where the selectivity originates from molecular sieving. Recently, 

we were able to obtain realistic atomistic models for these materials by means of a kinetic Monte Carlo 

(kMC) method. In this paper, we evaluate the ability of the model to predict adsorption of both non-

polar (methane and ethane) and polar (carbon dioxide) adsorptives. Predictions are in good agreement 

with experimental data, demonstrating the potential of these kMC-based models for use in the design of 

adsorption processes and the materials used in them. In particular, we show that surface roughness is a 

key feature for predicting adsorption in SBA-2 materials at low pressures; this is especially relevant in 

prospective applications such as carbon dioxide capture.  
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INTRODUCTION 

 

Periodic mesoporous silicas (PMSs) are promising adsorbents,1 as they offer a combination of high 

adsorption capacity and the scope to adjust both the size and the surface chemistry of the pores.2  SBA-

2, a PMS with spherical cavities interconnected by windows,3-5 has been synthesized and characterized 

by different groups.3-4, 6-8 Since the calcination temperature influences the size of the connecting 

windows, SBA-2 shows promise as an adsorbent for size- and shape-selective separations. The cavities 

in SBA-2 are hexagonally close-packed (hcp), reflecting the arrangement of the micelles in the 

precursor solution. That is, there is a sequence of two hexagonally packed layers, A and B, where the 

latter is slightly offset with respect to the former. A second, very similar, material is also produced as a 

result of this synthesis,3 differing from SBA-2 by having cubic close packed (ccp) symmetry, 

characterized by an A-B-C sequence of layers. In both cases the shape and size of the pores is the same, 

and the material characteristically exhibits a sharp pore size distribution around the mean pore 

diameter.7 Because of its different symmetry, the ccp material has a separate designation, St Andrews-

Cambridge-1 (STAC-1).3 In practice, neither material is synthesized as a pure phase, so that it is best to 

think of pure SBA-2 and pure STAC-1 as end-points of a spectrum of mixed materials.  

Because PMSs are not crystalline, models for these materials cannot be based on knowledge of 

atomic coordinates from X-ray or neutron diffraction. For this reason, the first models used to represent 

these adsorbents were simplified, smooth-pore representations4-5, 9-12 with surfaces that are regular at the 

atomic level, capturing the main structural characteristics such as pore size and shape but disregarding 

other important features such as the structure of the pore surface or the nature of the pore connectivity. 

For SBA-2, Pérez-Mendoza et al. proposed a model4-5, 13 consisting of a system of smooth spheres and 

cylinders where the adsorption was considered to occur independently in each pore (i.e. ignoring their 

connections with each other) and then integrated by means of a pore size distribution (PSD). However, 

it is known that in reality the pore surface in PMS materials is not smooth but rather has significant 
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roughness14-15 and there is a distribution of pore sizes.7 For these reasons more realistic models are 

needed in order to make accurate predictions of the performance of the material in adsorption and other 

applications. 

A different approach to modeling the structure of PMSs was taken by Schumacher and co-

workers,15-16 who developed a kinetic Monte Carlo (kMC) method that leads to atomistically realistic 

models of MCM-41, a PMS containing cylindrical pores. In a previous paper17 the present authors and 

others extended the approach of Schumacher and co-workers to SBA-2 and STAC-1. This kMC 

technique mimics the key steps of the synthesis of the real materials by following the silica 

condensation and aggregation mechanism, according to which randomly arranged micelles accumulate 

layers of silica around them before spontaneously aggregating to give the long-range order of the final 

material.18 A full account of this method is given in our earlier publication.17 The model pores obtained 

this way show good agreement with the degree of polymerization, density, and unit-cell parameters of 

experimental samples. In addition, nitrogen adsorption isotherms were predicted quantitatively when 

compared with experimental results, which is further evidence of the realism of the kMC approach. 

Also, we learnt from our models that pore-connectivity in SBA-2 and STAC-1 is likely to occur through 

windows rather than by channels,17 as was previously assumed.3, 5, 8, 19 The window-like nature of the 

pore connections means that adsorption takes place mainly in the spherical cavities.17 Figure 1a shows 

an example of an SBA-2 simulation cell, obtained by kMC simulation; the windows between the pores 

are also shown. Figure 1b shows the atomistic surface of the model pore, which arises naturally from the 

kMC simulation and mimics the roughness of the real materials. 
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Figure 1: a) Example of a single pore in the model SBA-2 material obtained using the kMC technique. 

What appear to be large voids in this image are the windows connecting the cavity to its neighbors. b) 

Close-up of the pore surface of an SBA-2 model pore. Silicon atoms are indicated in yellow, and 

oxygen atoms in red. Hydrogen atoms are omitted for clarity. 

 

In this work, we investigate the ability of our kMC-based model material to predict adsorption.  

This analysis, which involves a combination of Monte Carlo simulation of adsorption and experimental 

adsorption measurements, is of interest for two reasons.  Firstly, adsorption allows us to further 

investigate the realism of the model material, which is of fundamental interest in the study of the 

synthesis and structure of SBA-2. Adsorption at low pressure is very sensitive to surface roughness and 

(for polar adsorptives) to surface polarity, while adsorption at high pressure explores pore size and pore 

geometry.  Secondly, we evaluate the applicability of the model materials to adsorption technology; if it 

can be demonstrated that the adsorption of a range of gases can be reliably predicted, these models can 

be applied to the design of gas storage and separation processes, and to the tailoring of PMS-based 

adsorbents for use in such applications. To this end, we use these kMC-generated model pores to study 

the adsorption of non-polar (CH4 and C2H6) and polar (CO2) fluids on SBA-2/STAC-1, exploring the 

predictive capability of these models for adsorptives with different properties.  

We also investigate the adsorbent force-field for these materials, and in particular the question of 

the transferability of parameters – an issue that is critical to the prediction of adsorption using molecular 

simulation. The Lennard-Jones potential-well depth parameter for the silanol oxygens, (εo/kB)solid, 

a) b) 
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commonly used for simulating adsorption in PMSs is 185 K,4-5, 9, 15-16, 20 but this parameters was 

obtained by studying ethane adsorption on a smooth-pore representation of MCM-41,9 while our SBA-2 

model pores exhibit realistic pore roughness. For this reason, we study its transferability to our model 

pores, acknowledging that, along with surface roughness, (εo/kB)solid has a great impact on adsorption at 

low pressure. The simulated adsorption isotherms are compared to experimental results obtained by 

Pérez-Mendoza and co-workers4-5 on a sample calcined at 550 °C.  

 

SIMULATION METHOD 

 

 The kMC simulation method is presented in full in our earlier paper.17 Here we focus on aspects 

that are relevant to the modeling of adsorption in the model materials and the comparison of the 

adsorption predictions with experimental data. As we indicated earlier, the real material is in practice a 

mixture of SBA-2 (with hcp symmetry) and STAC-1 (with ccp symmetry).3 In order to obtain the hcp 

symmetry of SBA-2, the simulation cell must contain two cavities while for the ccp symmetry of 

STAC-1 a single cavity is sufficient.17 Henceforth we refer to the “single-cavity” model as SC, and TC 

for the “two-cavity” model, both representative of the distinct phases in the mixed material produced 

experimentally. We compare our simulated adsorption results with experimental data reported by Pérez-

Mendoza,4-5 who estimated a pore size of ~47 Å for the experimental material sample. 

Table 1 summarizes the main characteristics of the model pores used for this study. The diameter 

of each of the cavities, the variation of the local pore surface from a spherical shape (expressed as a 

standard deviation), and the connections of the cavities via the windows to their neighbors were studied 

by means of the random walk technique described elsewhere.17 The accessible surface area of these 

materials was determined by simulating rolling a probe molecule across the surface.21 In both these 

computations, a probe with a diameter of 3.3 Å was used.  
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The SC model pore used for this study has a mean cavity diameter of 47.2 Å and standard 

deviation of 3.7 Å, while the two pores in the TC model have mean cavity diameters of 47.6 and 48.9 Å 

with standard deviations of 1.8 Å and 2.5 Å respectively. The higher standard deviation of the SC model 

is already an indication of its higher surface roughness when compared to the TC pore model. The pores 

in the SC and TC models have a similar surface area. 

 

Table 1: Properties of the SC and TC models used in this study. 

 SC TC 

Unit cell 

parameter (Å) 

52.1 / 53.3 / 

50.1 

53.2 / 53.2 / 

85.5 

Unit cell mass 

(g/mol) 
5.17×104 1.09×105 

Number of Si 

atoms 
810 1693 

Number of 

silanol oxygen 

atoms 

341 797 

Pore diameter 

(Å) 
47.2 (±3.7) 

47.6 (±1.8) / 

48.9 (±2.5) 

Surface area 

(m2/g) 
1290 1245 

Skeletal 

density 

(g/cm3) 

3.31 3.29 

 

Adsorption was simulated using grand canonical Monte Carlo (GCMC) simulation.22 In this 

method, the thermodynamic state is defined by constant temperature T, constant volume V, and constant 

chemical potential for each adsorptive species i, μi, which was related to the pressure using the Peng-

Robinson equation of state.23-24 We modeled Coulombic interactions using the Ewald summation 

technique22 and dispersive interactions using the 12-6 Lennard-Jones (LJ) potential, with the Lorentz-
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Berthelot mixing rules being used to calculate mixed Lennard-Jones parameters. The LJ parameters and 

partial charges used in this work are given in Table 2. 

 

Table 2: Interaction parameters used in the GCMC adsorption simulations.  

 Site εi/kB (K) σi (Å) qi (eo) Reference 

Pore wall 

Si 0.0 0.0 1.2805 

9, 15-16 
bO 

165-200§ 
2.708 -0.6402 

nbO 3.000 -0.5261 

H 0.0 0.0 +0.2060 

He He 10.90 2.640 - 25 

CH4 CH4 147.90 3.730 0.0 26 

C2H6 * CH3 139.80 3.775 0.0 26 

CO2 ** 
C 29.00 2.79 0.66450 

27 
O 82.00 3.06 -0.33225 

* The CH3-CH3 bond length in ethane molecules is 1.53 Å 

** The C-O bond length in CO2 molecules is 1.161 Å 

§ Range of values studied in this work 

 

A value of 185 K for the LJ potential-well depth of the oxygen atoms in the adsorbent is widely 

used in the literature for simulating adsorption in PMSs,4-5, 9, 15-16, 20 particularly in the case of MCM-41. 

However, this parameter was originally derived for MCM-41 using experimental data for the adsorption 

of ethane and model pores with smooth walls.9 Unlike in the MCM-41 model originally used to set the 

value of the LJ potential-well depth, the kMC-generated pores are rough, and spherical in shape rather 

than cylindrical.  It is thus likely that the appropriate LJ potential-well depth will be different for the 

model pores studied here, since the oxygen-adsorptive potential would be expected to more closely 

reflect the true interatomic interactions, without having also to compensate for an unrealistically smooth 

surface. This would be in line with recent simulation results for neopentane adsorption in kMC-
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generated MCM-41pores, which showed this value had to be changed to get good agreement between 

simulation and experiment.20  

GCMC simulations give the absolute amount adsorbed, 

   

Nabs, as a function of pressure. 

Experimentally, however, the excess amount adsorbed, Nex, is measured. The transformation from one 

to the other is done through9, 25  

 (1) 

where 

   

VHe is the pore volume, which is obtained by the GCMC simulation of helium adsorption 

(mimicking the use of helium to measure the pore volume in adsorption experiments), and ρbulk is the 

density of the bulk adsorptive at the simulated temperature and pressure, which is calculated using the 

Peng-Robinson equation of state. 

 The isotherms predicted by our models are scaled by the ratio of the maximum amount adsorbed 

measured experimentally and that predicted by simulating adsorption in the model pores, thus 

accounting for the difference in pore size between the model pores and the pores in the experimental 

sample (since they are not an exact match), and also for any non-porous defects such as pore blocking 

that are present on real samples but are not accounted for in the pore models.  

 

RESULTS 

 

First we determined the optimal value of (εo/kB)solid for predicting adsorption in the SC model by 

using a non-polar adsorptive, ethane, and assigning different values of this parameter for the oxygen 

atoms in the pore wall. We used the experimental ethane isotherm at 273 K, a relatively low 

temperature, because the location of the point of inflection, which is a sensitive measure of the strength 

of the solid-fluid interaction, becomes more prominent as the temperature is reduced. We studied values 

of (εo/kB)solid from 135 K to 200 K. 

Nex = Nabs - rbulkVHe
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Figure 2 shows the predicted ethane isotherms using three different values for (εo/kB)solid 

compared with the experimental SBA-2 isotherm measured by Pérez-Mendoza et al.4-5 Using 185 K, the 

value widely used for MCM-41 simulations, as the potential well depth in the SC model leads to slight 

overpredictions of ethane uptake in the low-pressure range, suggesting that this value is too high. Thus, 

in Figure 2 we also present isotherms for (εo/kB)solid equal to 165 K and 135 K.  

 

 

Figure 2: Experimental and simulated ethane adsorption isotherms at 273 K for different values of 

(εo/kB) solid in the SC model. The inset shows the low pressure region of the adsorption isotherms. 

 

A reduction in (εo/kB)solid to 165 K improves the overall isotherm prediction including the low 

pressure region of the isotherm, which is a very sensitive measure for the fluid-solid interaction, while a 

further reduction to (εo/kB)solid = 135 K gives much poorer results.  This suggests that the optimal value 

is in the region of 165 K; this is confirmed by the calculation of the mean-squared errors in predicting 

the experimental isotherm, shown in Figure 3.  
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Figure 3: Mean-squared error for the deviation of the predicted ethane isotherms from the 

experimentally measured isotherm as a function of (εo/kB)solid. 

 

The observation that decreasing the value of the LJ parameter ε from the one originally derived 

for atomistically smooth model pores of MCM-419 leads to overall improvement in adsorption 

predictions reflects the fact that the rough surface of our model pores results in a stronger overall solid-

fluid interaction than would exist with a smooth surface. It is worth noting that, even with the optimal 

value of (εo/kB)solid, pore filling in the model pores consistently occurs at P ~ 12 bar, slightly lower than 

the value measured experimentally. This indicates that the size of the model pore is somewhat smaller 

than that of the experimental sample.  
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Figure 4: Ethane isotherms at 273 K predicted with the TC model for two values of (εo/kB)solid. The inset 

shows the low pressure region of the adsorption isotherms. 

 

To further investigate the role of the LJ parameter (εo/kB)solid, in Figure 4 we present the 

predicted ethane isotherms at 273 K, now using the TC model. As in the SC model, there is good 

agreement in the low pressure region between the simulated and experimental adsorption isotherms. The 

pore filling pressure (the pressure at the point of inflection of the isotherm) is slightly underestimated, 

and whilst the difference between using the potential well depth for the adsorbent as 185 K or 165 K is 

not as marked as in the case of the SC model it can still be seen that the latter provides a better overall 

approximation to the experimental isotherm.  We hypothesize that, since the pores in both the SC and 

TC models have comparable sizes, this is due to the smoother pore surfaces in the TC model pores (as 

indicated by the smaller standard deviations in the pore diameters reported in Table 1), resulting in an 

effective decrease in the solid-fluid interaction.  
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Figure 5: Methane isotherms at 263 K for two values of (εo/kB)solid using the SC model (top) and the TC 

model (bottom). The insets show the low pressure regions of the adsorption isotherms. 

 

Given the overall improved adsorption predictions by the newly proposed value for the LJ 

parameter, we now use this new value in simulating the adsorption of other species. Since the SBA-2 

experimental sample is not phase-pure, Figure 5shows methane adsorption predictions at 263 K using 

both the SC (Figure 5 a) and TC (Figure 5 b) models. While both predicted isotherms are very close to 
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the experimental results over the whole pressure range, the better match is obtained with the TC model. 

The new value of 165 K leads to better predictions in the low pressure range thus providing further 

evidence that for both pore models the new Lennard-Jones parameter gives a better representation of the 

solid-fluid interactions than the commonly used value of 185 K, supporting the transferability of this 

parameter. [To be clear, by “transferability” we mean in this context the applicability of a fixed 

parameter value to different model materials of the same general class – in this case, models for PMS 

materials generated by kMC simulation.  Of course, this is not to say that the same parameter value 

should be used for a smooth-pore model of the same PMS.] These results could be further improved by 

lowering (εo/kB)solid further, but this would compromise the prediction at higher pressures. Since the 

shape of the cavities in both the SC and the TC models is the same and methane adsorption in neither 

model material reaches pore filling, the difference in the predicted adsorption isotherm must be due to 

differences in the fluid-wall interactions, which in turn reflects the degree of surface roughness on the 

model pores. The fact that the predicted adsorption at low pressure is lower in the TC model than in the 

SC model again points to the surface of the TC model being less rough.  The interaction of the methane 

molecules with the pore surface is illustrated in Figure 6, which shows that the small methane molecules 

can reside within nooks in the pore wall that are just big enough for them to enter; these are not 

accessible to larger molecules such as ethane. 

 

Figure 6: Snapshot showing methane molecules trapped in nooks in the surface of the SC model pore. 

Color code: yellow- Si atoms; red- oxygen atoms; white- hydrogen atoms; and blue- methane 

molecules.  
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Having studied systems with non-polar adsorptives, we now look at the predictive performance 

of the models when the adsorptive is polar in nature and both dispersive and electrostatic interactions 

play an important role. Figure 7 presents carbon dioxide predictions for both (εo/kB)solid parameters  at 

263 K in the SC and TC model pores.  

 

 

Figure 7: CO2 isotherms at 263 K for two values of (εo/kB)solid using the SC model (top) and the TC 

model (bottom). The insets show the low pressure regions of the adsorption isotherms. 
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As illustrated in Figure 7a, the use of (εo/kB)solid = 165 K for CO2 in the SC pore model shows no 

improvement in the low pressure region predictions as well as a more marked inflection in the isotherm. 

The mean-squared error for the deviation between simulated and experimental isotherm is 0.0271 

mmol2 / g2 for (εo/kB)solid = 165 K and 0.0099 mmol2 / g2 for (εo/kB)solid = 185 K. Also, as expected, the 

value of (εo/kB)solid has little impact on the accuracy of the predictions at higher pressures. Note that the 

SC model gives better predictions for CO2 than it did for ethane, including better prediction of the pore-

filling pressure. 

 

Figure 7b shows CO2 adsorption predictions using the TC model. As in the case of the SC 

model, the general features of the CO2 isotherm are realistically captured, whilst quantitatively the 

simulations slightly underpredicted the experimental adsorption. When using the TC model, contrary to 

what was seen with the SC model, predictions at low pressure obtained using (εo/kB)solid = 185 K are 

slightly more accurate. As in the case of ethane adsorption, this reflects the fact that the TC model has 

cavities with smoother pore surfaces than those of the SC model, and the larger (εo/kB)solid parameter for 

the solid compensates for the lower solid-fluid interactions.  

 

CONCLUSIONS 

 

We used models of SBA-2/STAC-1 generated by kMC simulation to study the adsorption of 

species of differing molecular size and polarity. The agreement between simulated and experimental 

adsorption isotherms is very good, particularly for ethane and CO2. Methane adsorption is slightly 

overestimated, perhaps because the simulated material has pore surfaces that are slightly rougher than 

the real material. The fact that there are generally accurate predictions over the entire pressure range for 

both polar and non-polar adsorptives is a good indication that these model pores are a realistic 
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representation of SBA-2/STAC-1 from the point of view of adsorption.  As adsorption is a sensitive 

probe of both surface structure and pore geometry, our results strongly support the realism of kMC-

generated models for these materials, and suggest their wider applicability to PMSs. These models 

provide a useful tool for predicting the impact of material properties on adsorption in this class of 

materials, and for designing new PMS-based adsorbents for applications in gas storage and separation.   

The Lennard-Jones potential-well depth parameter (εo/kB)solid commonly used for predicting 

adsorption in MCM-41 is found to overpredict adsorption at low pressures in SBA-2/STAC-1, and upon 

optimization a value of 165 K was found to provide better overall results. The better predictive behavior 

of the model pores with (εo/kB)solid = 165 K seems to be due to the more realistic, rough nature of the 

pore surface, in contrast to the simplified, smooth surface of the models used to determine the literature 

value of (εo/kB)solid = 185 K. This emphasizes that care must be taken when transferring parameters 

between models representing different systems, where the models have been generated using different 

methodologies.  
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