Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Evaluation of the impact of high bandwidth energy storage systems on DC protection

Rakhra, Puran and Norman, Patrick J. and Fletcher, Steven D. A. and Galloway, Stuart J. and Burt, Graeme M. (2016) Evaluation of the impact of high bandwidth energy storage systems on DC protection. IEEE Transactions on Power Delivery, 31 (2). pp. 586-595. ISSN 0885-8977

Text (Rakhra-etal-IEEE-TOPD-2015-Evaluation-of-the-impact-of-high-bandwidth-energy-storage-systems)
Rakhra_etal_IEEE_TOPD_2015_Evaluation_of_the_impact_of_high_bandwidth_energy_storage_systems.pdf - Accepted Author Manuscript

Download (880kB) | Preview


The integration of high bandwidth energy storage systems (ESS) in compact DC electrical power systems can increase the operational capability and overall flexibility of the network. However, the impact of ESSs on the performance of existing DC protection systems is not well understood. This paper identifies the key characteristics of the ESS that determine the extent of the protection blinding effects on slower acting generator systems on the network. It shows that higher fault impedances beyond that of an evaluated critical level will dampen the response of slower acting generator systems, decreasing the speed of corresponding overcurrent protection operation. The paper demonstrates the limitations of existing protection solutions and identifies more suitable protection approaches to remove/minimize the effects of protection blinding.