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This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the 

effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are 

fixed in either a rotating or inertial reference frame. Moreover, the contribution of the J2 zonal harmonic is 

included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast 

computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different 

perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control 

parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per 

revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust 

spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical 

integration with different integration schemes. An averaging technique is then proposed as an application of the 

analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a 

spacecraft from an elliptical to a circular orbit around the Earth. 
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1. INTRODUCTION 

Analytical solutions have been proposed for the integration of long, low thrust, multi-

revolution transfers under the assumption of small eccentricity (Kechichian 1997a, 1997b, 

1998a, 1998b, 1998c, 2007; Casalino and Colasurdo 2007), and averaging techniques 

(Geffroy and Epenoy 1997) (Kluever and Oleson 1998; Gao and Li 1998) exist for designing 

generic many-revolution transfers both with indirect and direct approaches. In particular, the 

works of J.A. Kechichian proposed various analytical or semi-analytical solutions to specific 

trajectory design problems. Kechichian 1998a tackled the problem of the planar, eccentricity-

constrained, low-thrust orbit raising, producing a closed form solution for the thrust control 

which takes advantage of the condition of constant eccentricity. Kechichian 1998b instead 

dealt with the problem of orbit raising with Earth shadow under tangential thrust and 
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presented a solution in series expansion with respect to the eccentricity for the equations of 

motion, which is valid up to eccentricities of 0.2. Similarly, Kechichian 1998c, treated the 

problem of optimal inclination change for quasi-circular orbits. Kechichian 1997 

reformulated Edelbaum’s problem with optimal control and applied it to the problem of 

transfers between non-coplanar, circular orbits. Kechichian 1997b, 2007 investigated the 

problem of low-thrust trajectory optimisation under the effect of J2 perturbation and derived 

the set of dynamical and adjoint equations for the solution of optimal control problems. Note 

that, the differential equation are not solved in closed form but integrated numerically. 

Similarly, authors from the former USSR (Evtushenko 1966, cited in Beletsky 1999) studied 

the integrability of the motion under continuous tangential acceleration and derived some 

interesting closed form solutions, for example for escape spirals. 

More recently, Colombo et al. (2009) proposed a semi-analytical solution for the case of 

tangential thrust that was applied to the low-thrust deflection of Near Earth Objects. 

Lantoine and Russell (2009, 2011), proposed an analytical solution to the classical Stark 

problem. The authors derived an exact, closed form solution in terms of elliptic integrals, for 

the orbit motion perturbed by a constant acceleration in an inertial reference frame. 

Bombardelli et al. (2011) proposed a first order analytical solution based on perturbation 

theory for the case of constant tangential acceleration. 

Zuiani et al. (2010, 2012a) presented an analytical solution in non-singular orbital elements 

and implemented it into a direct transcription method for optimal control called Direct Finite 

Perturbative Elements in Time (DFPET). The same analytical formulation was applied to the 

propagation of the motion of an asteroid under the effect of a low-thrust deflection action 

(Zuiani et al. 2012b) and to the multi-objective optimisation of low-thrust active debris 

removal strategies (Zuiani and Vasile 2012a). 

Notable examples of long low-thrust spiralling trajectories are the ones of SMART-1 

(Schoenmaekers 2001), of NASA’s Dawn. The latter’s objective is that of visiting two dwarf 

planets in the asteroid belt, Vesta and Ceres (Russell et al., 2007; Smith et al., 2013). Among 

planned missions, JAXA’s DESTINY (Zuiani, Kawakatsu and Vasile, 2013) is noteworthy, 

in which the thrust-to-mass ratio is in the order of 10-4 m/s2. 

This paper extends the previous work from the authors on the derivation of a general set of 

first order analytical solutions in non-singular elements for the Keplerian motion under a 

constant control acceleration. The new set of analytical formulae, presented in this paper, 

now includes also the contribution of a constant inertial acceleration, constant tangential 

acceleration and the J2 effect. Adding to this, the approach to the solution of the time 
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equation has been revised and improved compared to the previous work. The results in this 

paper generalise and extend the existing solutions in the literature, offering the possibility to 

treat different acceleration profiles and a general set of orbital elements. It will be shown that 

the resulting analytical approximate solution is suitable for the fast and accurate propagation 

of long spiralling trajectories in which different perturbative actions are present. Moreover, 

an application will be presented in which the analytical solutions are used to compute the 

average variation of the orbit over one revolution. A simplified parameterisation of the 

thrusting pattern is then introduced to quickly estimate the cost of long controlled spiralling 

transfers, like, for example, a Geostationary Transfer Orbit (GTO) to Geostationary Earth 

Orbit (GEO) circularisation. This approach can be seen as a form of direct transcription that 

does not require the derivation the first order optimality conditions and the solution of the 

adjoint equations. 

The paper is structured as follows. Section 2 will present the derivation of the analytical 

formulae. Further details can be found in the Appendix in the supplementary material 

available online. Section 3 will start by studying the accuracy and computational cost of the 

analytical formulas for integrations over one revolution period. This first analysis clarifies the 

relationship between accuracy and acceleration magnitude. Section 3 will then show the 

accuracy of the proposed formulas for integrations over several hundreds of revolutions. 

Section 4 shows how eclipses and discontinuous control profiles are introduced in the 

analytical formulation, while Section 5 will present some applications. In particular, the 

analytical formulas are used to implement a fast averaging technique. An example of 

optimised transfer from a GTO to GEO concludes Section 5. 

2. Analytical Formulae 

Let the state of a spacecraft, moving around a gravitational body with gravity constant µ, be 

expressed in terms of non-singular equinoctial elements (Battin 1987): 
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where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right 

ascension of the ascending node, ω is the argument of perigee and θ is the true anomaly. 

Then, the perturbed Keplerian motion is governed by Gauss’ planetary equations: 
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with: 
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The quantities ar, aθ, ah, are the components of a perturbing acceleration in the radial-

transverse-normal (r-θ-h) reference frame centred in the spacecraft. The components of the 

perturbing acceleration can also be expressed in terms of modulus ε, azimuth α and 

elevation β as: 
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As shown in Zuiani et al. (2012), if one assumes that the modulus of the perturbative 

acceleration is small compared to the local gravitational acceleration, one can write: 

 ( )
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     [5] 

where r is the distance from the centre of the gravitational body and h is the norm of the 

angular momentum. By substituting [5] into Eqs. [2] one obtains a system of equations in 

the longitude L: 
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or, in vector form, taking 1 2 1 2[ , , , , ]Ta P P Q Q=E : 
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Substituting [8] into [7] and expanding the right hand side in Taylor series with respect to 

ε, one obtains: 
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By collecting the terms which depend on the same powers of ε and neglecting second and 

higher order terms, one obtains: 
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Therefore, the first-order expansion term in ε becomes: 
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To obtain a first-order expansion for the time, let one apply a similar procedure to [5]. First, 
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These two equations can be integrated in L to get the expressions  
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Note that the zero-order term t0 is not simply the time t00 corresponding to L0, but includes 

also the time variation given by the unperturbed Keplerian motion. In addition, the presence 

of the terms a1, P11, P21 essentially implies a double integration between L0 and L. In the 

following expressions [11] and [16] will be developed for different types of perturbative 

acceleration. 
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2.1. Constant Acceleration in the r-θ-h Frame 

If one assumes a constant acceleration modulus and direction in the r-θ-h frame, then the 

expansion [8], taking only the first order terms in ε, takes the following form: 
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where the terms Icn, Isn and I1n, with n = 1,2,3, are integrals in L in the form: 
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The function Φ0 is the term in [3] evaluated with P1=P10 and P2=P20. The full analytical form 

for these integrals is reported in the online Appendix. As for the expression of t1 in the time 

equation [16], one can see, from numerical analysis, that neglecting the terms in square 

brackets multiplying P11 and P21 does not introduce a relevant error in all the cases analysed 

in this paper. Hence, only the term depending on a1 is retained to give the analytical 

expression: 
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The full analytical expansions for these integrals are found in the online Appendix. 

2.2. Constant Inertial Acceleration 

A constant acceleration in the inertial reference frame can be expressed, in the r-θ-h frame, as 

a function of the longitude L: 
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where γ0 derives from the initial acceleration azimuth α0 at L0, as: 

 0 0 0Lγ α= +    [22] 

Note that the initial azimuth α0 and elevation β0 are defined with respect to the r-θ-h frame at 

L0. By substituting [21] into [6], and after some manipulation, one can obtain an expression 

analogous to [17]: 
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where the integral terms 1 1 3c sI , 2 3cI 2 3sI are given in the online Appendix. Similarly, the 

first-order perturbative term in the time equation translates into: 
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2.3. Constant Tangential Acceleration 

A constant acceleration along the tangential direction can be expressed, in the r-θ-h frame, as 

a function of the longitude L: 

2 1 1 2sin cos 1 sin cos
0t t t t t

r h

P L P L P L P L
a a a

D Dθε ε− + += = =    [25] 

where D is expressed as: 

 ( )2 2
1 2 1 21 2 sin cosD P P P L P L= + + + +     [26] 

Again, by substituting [25] into [6] one obtains: 
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D0 is simply D evaluated with P1=P10 and P2=P20. The three integral terms are more 

conveniently expressed with respect to the true anomaly θ and eccentricity e, assuming that 
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The primitives of Ia, IP1 and IP2 are available in closed form and are reported in the online 

Appendix. Note that in [16] and [17] of the online Appendix there are terms that represent 

incomplete elliptic integrals of the first and second kind, represented as F and E respectively. 

In this work, E and F are conveniently evaluated numerically using Carlson’s Duplication 

Algorithms (Carlson 1979). Rearranging the terms in [27], one obtains (omitting the 

expressions for Q1 and Q2): 
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In the case of tangential thrust, in the first order term of the time equation [16], one has terms 

that depend on the above-mentioned elliptic integrals, which appear in [28]. After some 

manipulation, one would obtain: 

( ) ( ){

( )
( ) ( )

( ) ( )
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0 0

1 1.5 2
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0 0 1

2
0 0 0 2
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 −

Φ 

Φ∫
 [31] 

Expanding the terms in the integral, for example, considering only Ia (as in Eq. [16] of the 

online Appendix), the following integral emerges: 
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2
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 [32] 

Note that the terms 
( )
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0
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d
e

θ

θ

ϑ
ϑ

ϑ 
 
 
 

+

+
∫  are not available in 

closed form. Similar considerations apply to the terms in [31] depending on IP1 and IP2. 

Therefore, in this case, it has been chosen to numerically integrate the expression for t1 in 

[16] with a quadrature method. Numerical tests have shown that, by setting the number of 

integration nodes at 6 per revolution, adequate accuracy is achieved. 

2.4. J2 Perturbation 

The inhomogeneous gravity field of the Earth is usually modelled as a series expansion of 

harmonic functions whose coefficients are experimentally derived in order to match the 

observed motion of satellites. The strongest contribution to the motion of an Earth-orbiting 

satellite is given by the first zonal harmonic term, also known as J2 term (Battin 1987). The 

effect of the J2 term can be expressed as a perturbative term in the Gauss variational 

equations. In particular, the components of the J2 perturbation in the r-θ-h frame can be 

expressed as (Kechichian 1997): 
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  [33] 

where R is the planetary radius and G is: 

 2 2
1 21G Q Q= + +     [34] 

By substituting [33] into [6], and with the procedure previously described, one can write the 

first-order variation of the equinoctial elements due to the J2 perturbation. In a compact form, 

this can be expressed as: 
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        [35] 

where 2Jε  is defined as 2 2 2
2 0

J J R aε −= . G0 is G, as in [34], evaluated with Q1=Q10 and 

Q2=Q20. The integral terms are represented as: 
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[36] 

Their analytical expressions are reported in the online Appendix. Note that there is no linear 

component in L in the expression of IJa (given in Eq. [19] in the online Appendix), 

confirming the known result that J2 is not inducing any secular variation of the semi-major 

axis and thus the energy. There is, on the other hand, a short-term periodic variation of a over 

one orbital revolution. The remaining equinoctial elements (see Equations [20], [21], [22] and 

[23] of the online Appendix), present both a short-term periodic variation and a secular one, 

which is linear with respect to L. 

2.5. Superimposition of Perturbations 

It has been assumed that the perturbing acceleration is small, and consequently that the 

variation of the orbital elements induced by this perturbation will similarly be small. For 

example, one can assume that the variation of the orbital plane due to J2 and out-of-plane 

thrust will be small and therefore the Equation [21] for the inertial acceleration is still 

applicable. In this sense, it is also possible to linearly superimpose the four analytical 

solutions shown in the previous sections to obtain an analytical expansion for the case in 

which these perturbations are acting together: 
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  [37] 

3. Accuracy of the Analytical Expansions 

This section contains an analysis of the accuracy and computational cost of the analytical 

formulae presented in the previous section. Accuracy and computational cost are evaluated 

against a numeric integration of [6] with different integration schemes and accuracies. An 

initial elliptical orbit, whose orbital parameters are given in Table 1, is propagated under the 

combined effect of the J2 perturbation, an acceleration along the tangential direction of 10-4 

m/s2 and an inertial acceleration of 10-6 m/s2 (equivalent to solar radiation pressure acting on 

a spacecraft with an area to mass ratio of 1/4.56 m2/kg at 1 AU).  

a e i Ω ω θ 

24478 km 0.73 6° 0° 0° 0° 

Table 1: GTO orbital parameters 

At first, the motion is propagated for an arc-length up to 2π and the performance of the 

analytical formulae is evaluated against three numerical integration schemes. This first 

analysis provides an evaluation of the suitability of the analytical formulae as fast integration 

method to be used in the orbit averaging that will be presented in section 5. The numerical 

integration schemes are: a Gauss-Legendre quadrature formula with a number of nodes 

between 4 and 24, a Modified Euler method with a number of equally spaced steps between 4 

and 16, and an 8th-order Runge-Kutta method with 13 steps (RK8(7)13) (Prince and Dormand 

1981). Note that the Modified Euler evaluates the integrand function twice per step, therefore 

the number of function evaluations is double the number of steps. For each method, the 

integration error is computed as the difference between the analytical formulae and a 

numerical integration performed with MATLAB® ode113, implementing an Adams-Bashfort 

predictor-corrector method, with relative and absolute tolerances equal to 10-13. 
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a) 

 
b) 

Fig. 1: Comparison with numerical integration: error on semi-major axis. a) Gauss-Legendre b) Modified Euler and 
Runge-Kutta. 

Fig. 1a shows the error on the semi-major axis. One can see that the Gauss-Legendre 

integration has a rather noisy behaviour already for short arc-lengths; only the case with 24 

nodes shows comparable accuracy to the analytical propagation. Moreover it has to be noted 

that Gauss-Legendre quadrature will, at best, have the same accuracy of the analytical step 

since it is numerically calculating the same integral forms. Fig. 1b shows a similar 

comparison with the Modified Euler and RK8(7)13 methods and leads to analogous 

conclusions. The Modified Euler integrator gives good results only with a high number of 

steps. The RK8(7)13 scheme is extremely accurate for short arc-length, but as this increases, 

the numerical integral quickly diverges from the true solution. Fig. 2a, Fig. 2b and Fig. 3a 

plot the summary of the maximum errors on semi-major axis, P1 and time respectively, and 

clearly show the better accuracy of the analytical propagation. Only Gauss Legendre with 24 

approaches the same level of performance but its computational cost, as shown in Fig. 3b, is 

almost three times higher. 

a) b) 

Fig. 2: Comparison with numerical integration: maximum error on: a) semi-major axis b) P1. 
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a) b) 

Fig. 3: Comparison with numerical integration: a) maximum error on time b) computational cost. 

Note that, in this comparison, the analytical formulae require the computation of relatively 

expensive elliptic integrals. If a constant acceleration in a r-θ-h frame is considered instead 

the computational cost is about a quarter of that of a constant tangential acceleration.  
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Legendre quadrature with 6+6+6+6 nodes displays a comparable or lower error on the semi-

major axis (see Fig. 4a), although it fares worse in the other cases. In terms of computational 

cost (see Fig. 5b) only Gauss-Legendre with 16 nodes is cheaper than the analytical 

propagation, while the others are more expensive. 

a) b) 

Fig. 4: Comparison with numerical integration on discontinuous arcs: a) maximum error on semi-major axis b) 
maximum error on time. 

a) 
b) 

Fig. 5: Comparison with numerical integration on discontinuous arcs: a) maximum error on time b) computational 
cost. 
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different ε, aligned along the tangential direction. Although here, for simplicity, only the 

tangential acceleration case is considered, the same considerations are applicable to the other 

perturbative accelerations. Fig. 6a shows the error on the semi-major axis relative to a0, as a 

function of a0 itself and ε. One can see that for a large initial semi-major axis and ε = 10-3 

m/s2 the error grows above 1%. However one should consider that 10-3 m/s2 is a performance 

level hardly attainable with current electric propulsion technology. If the acceleration is 

instead in the range of 10-4 to 10-6 m/s2, the resulting propagation error remains below 0.001 

for relatively large orbits with semi-major axis up to about 105 km. Note also that all orbits in 

the LEO to GEO class are integrated very accurately, with a relative error lower than 10-5. 

   
a) b) c) 
Fig. 6 a): Relative error on a over one revolution w.r.t. a0 and ε. b): Error on P1 over one revolution w.r.t. a0 and ε. c): 

Relative error on time over one revolution w.r.t. a0 and ε. 

A similar behaviour can be observed in Fig. 6b for P1 and in Fig. 6c for the time t. The 

former is closely related to the orbit eccentricity and therefore it is desirable to keep the error 

per orbit below 10-5 to 10-6 which, as shown in the graph, can be attained in most cases except 

for high a0, large ε combinations. Fig. 6c shows the error on time divided by the period of the 

initial osculating orbit and one can see that the perturbed orbit duration is also computed very 

accurately with the error being just a fraction of the total duration. 
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a e i Ω ω θ 

7500 km 0.1 6° 0° 10° 0° 

Table 2: Initial orbit parameters 

The following test assesses the accuracy and speed of the formulae in the worst case of 

combined pertubations, as described in Section 2.5. The modulus of the acceleration in the r-

θ-h frame is ε = 10-4 m/s2, with α = π/2 and β = π/6. The inertial and tangential components 

have the same modulus.  

  
a) b) 

  

c) d) 
Fig. 7: Combined perturbations: a) error on semi-major axis. b) error on P1. c) error on Q1. d) error on time. 
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accumulates an error that is less than 30 s after 20 orbits (a relative error of 5×10-3). This 

result demonstrates that the new approximation proposed in [16] reduces the error by one 

order of magnitude with respect to the previous formulation proposed in Zuiani et al. (2012) 

for the same ratio of control and local gravity acceleration. Note that a good computation of 

the elapsed time is essential, in particular when one has to use this datum to compute the ∆V 

corresponding to the propagated thrusting arc. 

In this test the analytical propagation required about 1.5×10-3 s compared to 0.8 s of the 

numerical integration with ode113. If the tolerance on the relative and absolute error of the 

numerical integration is relaxed to 10-5 (a relative error comparable to the one of the 

analytical solutions), the CPU time for ode113 reduces to about 0.24 s, which is still two 

orders of magnitude slower than the analytical propagation. 

3.2.1. Propagation Error Control Over Long Spiralling Arcs  

The results in the previous sections show that the propagation error of the proposed analytical 

solutions remains contained over relatively long arcs provided that ε is small compared to the 

local gravity field (see Zuiani et al. 2012a). For longer spirals, however, an error control 

strategy is required to preserve accuracy even for small values of ε. 

The propagation error can be controlled by updating the reference condition E0 in [11] and 

[16] every n orbits. The update consists of taking the value for E(L) computed at the n-th 

orbit as the new reference condition E0 for the following n orbits. This technique, presented 

in Colombo et al. (2009), can be regarded as a rectification of the analytical propagation.  

The effectiveness of the technique is demonstrated here with the propagation of an initial 

circular orbit with a semi-major axis of 7000 km under the effect of an acceleration ε = 10-4 

m/s2 along the tangential direction. The length of the propagation arc is equal to 500 complete 

revolutions. The frequency of updates is set to n = 20, leading to a total of 25 evaluations of 

the analytical formulae. The analytical propagation required about 0.03 s while a numerical 

one with ode113 (Adams-Bashfort, with tolerance set to 10-13) took about 7 s. Fig. 8a shows 

that the relative error in the semi-major axis remains below 5×10-4.  
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a) b) 

Fig. 8: LEO propagation: a) relative error on semi-major axis. b) error on eccentricity. 

Fig. 8b shows the effect of the rectification process on the error in eccentricity, which 

remains below 1.2×10-5
 after 500 orbits. 

A further test considers the propagation from an initial Geostationary Transfer Orbit (see 

Table 1) until escape condition is reached with an acceleration ε = 10-4 m/s2 in the tangential 

direction. This time, due the fact that the transfer is much longer and will span a wide range 

of different orbit energies, a simple dynamic rule is implemented to define the frequency of 

rectification. As detailed in Table 3, the frequency of rectification is proportional to the value 

of the semi-major axis. The analytical propagation was compared to a numerical integration 

with ode113. The computational times are around 0.6 s for the analytical propagation and 15s 

for ode113. Similar to the previous case, Fig. 9 show, respectively, the variation of semi-

major axis, the eccentricity and the relative error on radius modulus and that on phasing. Fig. 

9a shows a very good match between the analytical and numerical propagations, as can also 

be seen in Fig. 9b for the eccentricity. The match is very good up to the last few revolutions 

when the semi-major axis is very large and the analytical formulae become relatively 

inaccurate. Fig. 9d shows the relative error on the modulus of the position vector. The figures 

show that the relative error remains below 10-3 for a good part of the spiral and grows above 

10-2 only towards the end when the semi-major axis grows above 5×104 km. Fig. 9e shows 

the phasing error as the angular distance between the radius vector computed analytically and 

the one computed from the numerical integration. As can be seen this stays always below 10-2 

rad. 
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Table 3: Rectification strategy 

 

   
a) b) c) 

  
d) e) 

Fig. 9: GTO propagation: a) semi-major axis. b) eccentricity, whole trajectory. c) eccentricity, magnification of last 
orbits. d) relative error on radius. e) phasing error. 

 

4. Discontinuous Control Profiles and Eclipses 

In the numerical tests presented in the previous section, a simple continuous acceleration was 

considered. This section proposes a simple approach to introduce bang-zero-bang control 

profiles and eclipses. 
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Fig. 10: Control pattern. 

The interest is in the class of low-thrust transfers whose quasi-optimal control corresponds to 

two thrust arcs. For this class of transfers, each revolution can be divided into 4 sectors, as 

shown in Fig. 10: a perigee thrust arc, an apogee thrust arc and two coasting arcs in between. 

The former, of amplitude ∆Lp, is meant to alter the radius of the apocentre, while the latter, of 

amplitude ∆La, alters the radius of the pericentre. The combined effect of the two thrust arcs 

can be used to control the inclination and the argument of the pericentre. The variation of the 

orbital elements along the thrusting arcs is computed with the analytical formulae. A plane 

change is realised introducing a non-zero elevation angle βp and βa. The amplitude of the arcs 

∆Lp and ∆La, and the angles βp and βa, are the quantities to be controlled to match the desired 

terminal conditions. When a constant thrust is required for each arc, the mass of the 

spacecraft mf at the end of a thrust arc can be estimated assuming the control acceleration ε is 

constant along the thrust arc: 

 0sp

t

I g
f im m e

ε∆−

=       [38] 

where mi is the mass of the spacecraft at the beginning of the thrust arc. The new mass is then 

used to recompute the control acceleration for the next thrust arc. 

4.1. Eclipse Modelling 

In the case of long, multi-revolution transfers, the effect of a solar eclipse might be 

considerable if one takes into account the fact that, for example, during an eclipse the 

operation of an electric propulsion system will, most likely, have to be interrupted due to 

limitations on power generation and storage. Moreover, eclipses change due to the combined 

effect of the motion of the Earth around the Sun and the variation of orbit size and orientation 

due to engine thrust and other perturbative effects. In the case of a full numerical integration, 
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eclipses are computed by checking shadow conditions at each step and eventually activating 

or deactivating some kind of eclipse flag. This leads to discontinuities in the integrand 

function. In an analytical approach, like the one here proposed, one can however exploit the 

fact that the entrance and exit points of the shadow cone (for the sake of simplicity, no 

distinction is made between umbra and penumbra conditions) can be computed beforehand 

and then the thrusting arcs can be updated accordingly. Other authors have already proposed 

a similar approach, see for example Kechichian (1998a), in which orbits with eccentricity up 

to 0.2 are considered; Colombo and McInnes (2011) also applied a similar method but limited 

to the planar case. In this work, a cylindrical model for Earth’s shadow is adopted (see Fig. 

11), which is perfectly adequate in the case of a spacecraft in Earth orbit.  

 
Fig. 11: Shadow model. 

In order to identify the eclipse entry and exit points one has to find the true anomalies of the 

geometrical intersections between the cylinder and the osculating orbit. The mathematical 

formulation of this problem can be found in Escobal (1965) and Vallado (2007) and will not 

be repeated here. Starting from the osculating orbital elements and the current Sun-Earth 

vector, this formulation leads to a quartic equation in cosθ, which can be solved either 

analytically by means of Ferrari’s method, as is done in this work, or numerically with a root-

finding algorithm. Note that out of the 4 roots of the quartic polynomial, two are spurious. 

Once the shadow entry and exit points are known, one can correct the thrusting and coasting 

arcs as shown in Fig. 12. 
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Fig. 12: Thrust pattern with eclipse region. 

Apart from identifying the shadow regions, this formulation also allows one to analytically 

compute the time spent in the shadow region, tecl, for each orbit. 

 

5. Applications 

This section presents a number of applications of the analytical formulae to cases of practical 

interest. In particular, it will be shown how the analytical formulae can be effectively used to 

implement an orbit averaging technique. 

5.1. Orbit Averaging 

In the previous sections, a set of analytical formulae for propagating the perturbed Keplerian 

motion was proposed. As a further step, it is proposed to use these formulae to compute the 

average variation of the orbital elements over a complete revolution and to numerically 

propagate the average orbital elements, as it is done in classical averaging techniques (see 

Ferrier and Epenoy 2001, Tarzi et al. 2013). In the proposed averaging technique, the 

variation of the orbital elements is given by: 
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where E  represents the vector of the averaged orbital elements. ∆E2π is the net variation of 

the orbital elements computed over a complete revolution and T2π is the corresponding 
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period. In some orbit averaging techniques, ∆E2π is computed by numerical quadrature of 

Gauss’ planetary equations over the true anomaly (or longitude). Here ∆E2π is provided by 

the evaluation of the analytical formulae at L = 2π. As shown in Section 3, this is 

advantageous in terms of computational cost for a comparable accuracy. The terms pL∆ , 

aL∆ , pβ  and aβ  are the control parameters mentioned in Section 4 and are computed as a 

piecewise linear interpolation with respect to time, from nnodes nodal values, uniformly spaced 

within the limits of the transfer period. For example, in the case of pL∆ , one can write: 

 ( ) ( ), ,p inter pp pL t f t∆ = t ∆L      [40] 

where ∆Lp is a vector containing the nnodes nodal values, tp is the vector which collects the 

corresponding times at which the nodal values are specified, and finterp defines a piecewise 

linear interpolation. The tests in Section 3 have already shown that the analytical propagation 

is advantageous over numerical quadrature even in the case of discontinuous thrusting 

profiles over a single revolution. 

5.2. Spiralling with Solar Radiation Pressure and Eclipses 

This section presents a comparison between the averaged solution and the rectified solution 

for the case of a long term propagation of an initial planar elliptical orbit (as in Table 4) under 

the combined effect of a thrust acceleration along the tangential direction, solar radiation 

pressure (SRP) and Earth oblateness (J2 effect). 

a E i Ω ω θ 

20000 km 0.5 0° 0° 0° 0° 

Table 4: Initial orbit parameters. 

The initial mass of the spacecraft is 1000 kg, and it is assumed that the engine delivers 10-2 N 

at a specific impulse of 3000 s. The cross section area used to compute the SRP acceleration 

is 1200 m2, a value chosen so that the resulting force is about half of the thrust of the engine. 

At departure, the Sun lies at the Summer Solstice point. The propagation time is set to one 

and a half years. The SRP direction is considered to be constant along an orbit, therefore 

allowing the use of the formulas in [23] for a constant inertial acceleration. The secular 

variation in the Sun-Earth direction is used to update the direction of the inertial acceleration. 

Moreover, eclipses are introduced with the methodology detailed in Section 4.1 and the 

consequent thrust interruptions are accounted for. The averaged propagation is performed 

with MATLAB ® ode23 which implements a Runge-Kutta integration method. The results are 
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compared to a full numerical integration with ode113, and to the analytic propagation with 

rectification every orbit if no eclipse occurs or two times per orbit if an eclipse is present. The 

CPU time required by the averaged analytic propagation was 1.2 s while the full numerical 

integration required about 100 s. The rectification required about 7 s, showing the additional 

advantage of the analytic averaging approach. Fig. 13a shows the long-term, monotonic 

increase of the semi-major axis due to the tangential thrust. Fig. 13b shows a close up of a 

portion of the curve. The dashed curve represents the full numerical integration, the dotted 

curve represents the analytical propagation with rectification and the solid curve the average 

solution. Note that the analytical formulas are evaluated only at the end of each revolution 

and at the transition out of the eclipse. The full numerical integration displays a short-term 

oscillation of a, due to J2 and SRP, a secular increment over a revolution. The averaged 

solution captures accurately the secular components while the analytical solution with 

rectification keeps track of the periodic components, although in the figure only the value of 

the semi-major axis at the eclipse times is plotted. 

 
Fig. 13: Spiralling with SRP: a) semi-major axis; b) Close-up. 

Fig. 14a shows the long term variation of orbital eccentricity due to the combined effects of 

tangential thrust and SRP. Tangential thrust alone would produce a monotonic decrease of the 

eccentricity, however, SRP adds a long-term oscillatory component that is linked to the 

rotation of the Sun-spacecraft vector. SRP also produces a small long term deviation of the 

inclination due to the relative angle between the Ecliptic plane and the Equatorial plane, in 

which the initial orbit lies, as shown in Fig. 14b. 
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a) b) 

Fig. 14: Spiralling with SRP: a) eccentricity. b) inclination. 

 

5.3. GTO to GEO Orbit Circularisation 

The previous section demonstrates the advantage of using the proposed analytical formulae 

for the long propagation of spirals with discontinuous control profiles and eclipses together 

with their use in conjunction with orbit averaging. In this section a further example will 

demonstrate how to combine the control parameterisation presented in Section 4 with orbit 

averaging to circularise an initial GTO into a GEO in a specified transfer time. The initial 

orbit parameters are as in Table 5.  

a e i Ω ω Θ 

24505.9 km 0.725 7° 0° 0° 0° 

Table 5: Initial orbit parameters. 

The target orbit is a GEO with zero inclination, therefore a plane change of 7° is also 

required. The time specified for the transfer is 225 days. Engine thrust is 0.35 N, with a 

specific impulse of 2000 s. The initial mass of the spacecraft is 2000 kg and mass 

consumption is taken into consideration during the transfer using [38]. Four nodes each are 

used to model the variation of ∆Lp, ∆La, βp and βa, leading to a total of 16 optimisation 

parameters. The total ∆V is minimised while matching the final semi-major axis, eccentricity 

and inclination, obtained through the analytical propagator, with those of the target orbit:  
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This is basically a single-shooting, direct collocation method. The MATLAB® fmincon-sqp 

algorithm is used to solve problem [41]. The optimisation converges in 8 iterations and 25 

seconds (on a Windows 7 platform), and the optimised solution has a ∆V cost of 1.78 km/s. 

This result compares well with that given, for an identical test problem, by the solver 

MIPELEC (see Ferrier and Epenoy 2001), which returns a ∆V cost of 1.68 km/s in about 14 s 

of computational time on a UNIX-based Sun workstation. To compare the computational 

times, one has to consider that MIPELEC is written in FORTRAN77 and a MATLAB code is 

usually at least one order of magnitude slower than an equivalent FORTRAN code. 
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e) f) 
Fig. 15: Orbit circularisation: a) semi-major axis. b) inclination. c) perigee and apogee. d) perigee and apogee. e) 

thrusting arc length. f) thrust azimuth and elevation. 

Fig. 15a, Fig. 15b and Fig. 15c show the variation of semi-major axis, eccentricity and 

inclination respectively. It can be seen that all quantities change monotonically from their 

initial values to the target ones. 

Fig. 15d shows the variation of perigee and apogee and it is interesting to see that the perigee 

rise gradually increases in speed. There is also a slight increase in the apogee radius due to 

the amplitude of the apogee thrusting arc which is compensated for in the last part of the 

transfer by a perigee arc (see Fig. 15e), with thrust in the negative tangential direction. Note 

that these behaviours are consistent with the results shown in Geffroy and Epenoy (1997) and 

Tarzi et al. (2013), even if here a much more simplified model has been used. 

Fig. 15f shows the thrust azimuth α and elevation β in the t-n-h reference frame for the 

perigee and apogee thrusting arcs. It shows that the apogee arc always has a positive 

tangential component (i.e. energy-increasing), while the opposite is true for the perigee one 

since it has to compensate for the apogee altitude increase. The plane change effort is 

concentrated at the apocentre with an out-of-plane component around 15°. Note that the 

contribution of perigee thrusting to the plane change is only during the final part of the 

circularisation.  

6. Conclusions 

This paper has presented a set of analytical formulae for perturbed trajectories under the 

effect of a constant control acceleration, solar radiation pressure and J2 effect. The proposed 

approach is suitable for treating constant accelerations in the r-θ-h, n-t-h and inertial 

reference frames. The accuracy of the analytical solutions was shown to be good for the 
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propagation of relatively long trajectory arcs around the Earth, if the control acceleration 

level is comparable to the one delivered by current low-thrust engines.  

A rectification technique was then proposed to control the propagation error and to accurately 

propagate long spiralling trajectories. Finally, by introducing a simplified parameterisation 

for the thrusting pattern, the proposed approach was applied to the optimal design of long 

spirals with terminal constraints in combination with orbit averaging. 

The good accuracy displayed in the experimental tests and the fast propagation speed make 

the proposed analytical theory particularly suitable for the global multi-objective optimisation 

of low-thrust spirals. 
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