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This paper presents a set of analytical formulaetfe perturbed Keplerian motion of a spacecratteurthe
effect of a constant control acceleration. The psa set of formulae can treat control acceleratibat are
fixed in either a rotating or inertial referencarfre. Moreover, the contribution of tllg zonal harmonic is
included in the analytical formulae. It will be st that the proposed analytical theory allows fog fast
computation of long, multi-revolution spirals whiteaintaining good accuracy. The combined effeditbérent
perturbations and of the shadow regions due ta salgpse is also included. Furthermore, a simgifcontrol
parameterisation is introduced to optimise thrgstpatterns with two thrust arcs and two cost ares p
revolution. This simple parameterisation is showrehsure enough flexibility to describe complex ldwust
spirals. The accuracy and speed of the proposelytisaé formulae are compared against a full nueri
integration with different integration schemes. @reraging technique is then proposed as an agplicat the
analytical formulae. Finally, the paper presentggample of design of an optimal low-thrust spicatransfer a

spacecraft from an elliptical to a circular orbiband the Earth.
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1. INTRODUCTION

Analytical solutions have been proposed for theegrdtion of long, low thrust, multi-
revolution transfers under the assumption of sreadlentricity (Kechichian 1997a, 1997b,
1998a, 1998b, 1998c, 2007; Casalino and Colasuf®/)2 and averaging techniques
(Geffroy and Epenoy 1997) (Kluever and Oleson 199&p and Li 1998) exist for designing
generic many-revolution transfers both with indirand direct approaches. In particular, the
works of J.A. Kechichian proposed various analytamasemi-analytical solutions to specific
trajectory design problems. Kechichian 1998a tatkhe problem of the planar, eccentricity-
constrained, low-thrust orbit raising, producinglased form solution for the thrust control
which takes advantage of the condition of consemaentricity. Kechichian 1998b instead

dealt with the problem of orbit raising with Earfhadow under tangential thrust and



presented a solution in series expansion with rtdpethe eccentricity for the equations of
motion, which is valid up to eccentricities of 0Rimilarly, Kechichian 1998c, treated the
problem of optimal inclination change for quaskdiar orbits. Kechichian 1997
reformulated Edelbaum’s problem with optimal cohtand applied it to the problem of
transfers between non-coplanar, circular orbitschi@hian 1997b, 2007 investigated the
problem of low-thrust trajectory optimisation undkee effect ofJ, perturbation and derived
the set of dynamical and adjoint equations fordbleition of optimal control problems. Note
that, the differential equation are not solvedlosed form but integrated numerically.
Similarly, authors from the former USSR (Evtushedl®6, cited in Beletsky 1999) studied
the integrability of the motion under continuousdantial acceleration and derived some
interesting closed form solutions, for exampledscape spirals.

More recently, Colombo et al. (2009) proposed aiseralytical solution for the case of
tangential thrust that was applied to the low-thdeflection of Near Earth Objects.

Lantoine and Russell (2009, 2011), proposed anyacal solution to the classical Stark
problem. The authors derived an exact, closed &wluation in terms of elliptic integrals, for
the orbit motion perturbed by a constant accelenat an inertial reference frame.
Bombardelli et al. (2011) proposed a first ordealgiical solution based on perturbation
theory for the case of constant tangential accetera

Zuiani et al(2010, 2012a) presented an analytical solutionan-singular orbital elements
and implemented it into a direct transcription neeklior optimal control called Direct Finite
Perturbative Elements in Time (DFPET). The saméytioal formulation was applied to the
propagation of the motion of an asteroid underdfiect of a low-thrust deflection action
(Zuiani et al. 2012b) and to the multi-objectivetiopsation of low-thrust active debris
removal strategies (Zuiani and Vasile 2012a).

Notable examples of long low-thrust spiralling é@pries are the ones of SMART-1
(Schoenmaekers 2001), of NASA’s Dawn. The lattebgective is that of visiting two dwarf
planets in the asteroid belt, Vesta and Ceres @Rustsal., 2007; Smith et al., 2013). Among
planned missions, JAXA’'s DESTINY (Zuiani, Kawakatand Vasile, 2013) is noteworthy,
in which the thrust-to-mass ratio is in the ordet@* m/<’.

This paper extends the previous work from the astlom the derivation of a general set of
first order analytical solutions in non-singulaemlents for the Keplerian motion under a
constant control acceleration. The new set of dicalyformulae, presented in this paper,
now includes also the contribution of a constamrtial acceleration, constant tangential

acceleration and théd, effect. Adding to this, the approach to the solutiof the time
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equation has been revised and improved comparétketprevious work. The results in this
paper generalise and extend the existing solutiotise literature, offering the possibility to
treat different acceleration profiles and a gensealof orbital elements. It will be shown that
the resulting analytical approximate solution igahle for the fast and accurate propagation
of long spiralling trajectories in which differeperturbative actions are present. Moreover,
an application will be presented in which the atedy solutions are used to compute the
average variation of the orbit over one revolutién.simplified parameterisation of the
thrusting pattern is then introduced to quicklyireaste the cost of long controlled spiralling
transfers, like, for example, a Geostationary Tiem®rbit (GTO) to Geostationary Earth
Orbit (GEO) circularisation. This approach can bersas a form of direct transcription that
does not require the derivation the first ordernroptity conditions and the solution of the
adjoint equations.

The paper is structured as follows. Section 2 pitsent the derivation of the analytical
formulae. Further details can be found in the Aplderin the supplementary material
available online. Section 3 will start by studyitige accuracy and computational cost of the
analytical formulas for integrations over one rexnmn period. This first analysis clarifies the
relationship between accuracy and acceleration e Section 3 will then show the
accuracy of the proposed formulas for integratiomsr several hundreds of revolutions.
Section 4 shows how eclipses and discontinuousraoptofiles are introduced in the
analytical formulation, while Section 5 will presesome applications. In particular, the
analytical formulas are used to implement a fastraying technique. An example of

optimised transfer from a GTO to GEO concludesiSed.

2. Analytical Formulae

Let the state of a spacecraft, moving around aigtaganal body with gravity constant, be
expressed in terms of non-singular equinoctial eles(Battin 1987):

a
R =esin(Q + w)
P, = ecos(Q + w)

Q= tani—2 SinQ [1]

Q, = tan'E cox)

L=Q+w+8



where a is the semi-major axis is the eccentricityj is the inclination,Q is the right
ascension of the ascending nodejs the argument of perigee afAds the true anomaly.

Then, the perturbed Keplerian motion is governehyss’ planetary equations:
da_2 |a° .
o :E\/;[(stmL— P cod)a +®(L)a, |

dR _ B\/El:_ar cosL+[P1+SInL+ siri.)ag—PleCOSL_Qz S|ri_ah:|
U

dt (L) (L)
dP a . P, +cosL cosL —Q, sinL
oo 5 g
90, _B [a(;, 52402 Sint
- 2\/;(1+Q1+Q2)¢(L)ah
dQ, _B |a ) ,\ COSL
—2=_1Z(1
- 2\/;( +Q1+Q2)¢(L)ah
(2]
with:
B=41-R?-P7?=1-¢’ 9

®(L)=1+P,sinL+P, cod
The quantitiesa;, ay, a,, are the components of a perturbing acceleratiohée radial-
transverse-normak{¢-h) reference frame centred in the spacecraft. Timepoments of the

perturbing acceleration can also be expressedrmsteof modulus s, azimuth « and
elevation /4 as:

a, = £cosp cosr

a, = £Ccosp siny [4]

a, =€sing
As shown inZuiani et al. (2012), if one assumes that the maslwdf the perturbative

acceleration is small compared to the local graemal acceleration, one can write:

a_rt_ [ 8 o
d. h \ g ®*(L)

wherer is the distance from the centre of the gravitatidmody andh is the norm of the
angular momentum. By substituting [5] into Eqs. [#)e obtains a system of equations in
the longitudd_:



da _ 2a°B?| (R,sinL-P cod) 1
—=c cosa +———sina | coy
dL 7 »?(L) (L)

dp, _ _B%’|[_ cosL P +sinL  sinL | . 5 Q cos-Q, sih
£ H ¢2(L)cosa+( »*(L) +(D2(L)jsma] cogs-P, >*(L) suﬁ}

dP, _ B’ H sinL [Pz +cosL . cod
=& cosa +

. Q,cosL-Q, sinL .
P
a | e +¢2(L)]S'””J°’°S"' ey S'”"'}
dQ, _ B*a? sinL .
o= gy
dQ, _ B*a’ cosL .
e et
(6]
or, in vector form, takingE =[a, P, P,,Q,,Q,I":
%:gF(E,L,a,ﬁ) [7]

As in classical Regular Perturbation theory (see,ekample, Holmes (2009) or Sanders,
Verhulst and Murdock (2007), or also Beletsky (1)9P6ne can express the solution of [7] as
an expansion in the small parameterwith respect to a set of initial conditions

E, =[8y Poy Po0 Q10 Q 20]T :

a, +£a, +£a,
HO + 8P11+ ‘92 P12
I:>20 + £P21+ £2P22 +O(£3) [8]

QlO + EQll + £2Q12
QZO + £Q21 + £2Q22

Substituting [8] into [7] and expanding the riglanid side in Taylor series with respect to
£, one obtains:

E=E,+£E, +£°E,+0(e%) =

dE, , dE,  .dE, _., F+£dF(EO+£E1+...,L,a,,6’) s
d.  dl dL

de
=0
dF d’F
+|2—+¢
de dé&?

. [9]
—+...

By collecting the terms which depend on the sam&ep® of cand neglecting second and
higher order terms, one obtains:

2

=0




%=0:> E, = const

?jll_z [10]
e—Lt=¢F|(E,L,a,
= ¢ (E,,L.a.f)
Therefore, the first-order expansion ternz ilecomes:
L
E, (L) = [ F(EpL.a.B)dc [11]

Lo
To obtain a first-order expansion for the time,date apply a similar procedure to [5]. First,
let one expand the time in the form:
t=t,+et +&%t, +et +... [12]
and define the right-hand side of [5] d&,P1,P,,L), then by expandingl in Taylor series

as done previously, one obtains:

dt, dt,  ,dt, dH  d*H
—+&—+&—=+...=H PPy, L) +—&+ P 13
afal Tt (80 PiorPoo L)+ £+ 2 3]
and taking only the first order termsdnone can write:
dt, _dt dH dE
O 4+g—1=H(a,P. P LY+——¢ 14
d.  dl (80:Pio Poo L) dE de 14l
Again taking only the first order terms &gnone obtains:
at
2= H (80P PaL)
[15]
d dH aH aH
Ed—EZELE a1+$ P11+$ PZlJ
a9,Pi0:Pao 1lag,P0:P20o 2lagPyoP 5
These two equations can be integrated in get the expressions
L 3 3
- /ao B,
t(L)=t, + |, [>—2—dC
0( ) 00 LJ-O ,LI CDOZ(L)
( T4 087 ST ]Pn(ﬁ)+ 6
Lo g 382 a(e)  [\95(2) >’ () g
tl( )_'[ (o] 2 2 a.o L[
LV H o’ (£) 3P, , COSL
2 +ZBO 3 P21(£')
o’ (L) (L)

Note that the zero-order tertjis not simply the timey corresponding td.o, but includes
also the time variation given by the unperturbeglgean motion. In addition, the presence
of the termsay, P11, P21 essentially implies a double integration betwégrandL. In the
following expressions [11] and [16] will be devesmpfor different types of perturbative

acceleration.



2.1. Constant Acceleration in the r-8-h Frame
If one assumes a constant acceleration modulusdaadtion in ther-6-h frame, then the

expansion [8], taking only the first order termsjmakes the following form:

24 3
r19"280—6‘0005,6’ ( t 1 jcoss7/+l11 sim]
/’l q)O(L) q)O(LO)

4., 2
R = Pm+e”“B°Ta°[cosﬁ(—lc2 comr + (1, P+ 55+ 1) sim)~PQ.4. Qb ) Sif]

arﬁhzao_'_g

4, 2
P = P+ —Boyao [cosB (1,080 + (1, Pyt 1,5+ 1, ) si) +P{Q i}, 5Q o s)sinB]

Q" =Q +£rﬂhﬁ(1+Q2+Q2)l sing
J 0 2/,1 1 2) "s3

Q" =0Q +£rﬂhﬁ(1+Q2+Q2)l sinpg
, b0 2/,1 1 2)'c3

[17]
where the termk;, ls, andly, with n=1,2,3, are integrals inin the form:
L L . L
COSL sinc 1
o = | =7x9L g = | —=7=dL |, = | —7=dc [18]
Jaig ==l "= Jayo

The function®g is the term in [3] evaluated with=P1p andP,-P,. The full analytical form
for these integrals is reported in the online AgpenAs for the expression ¢f in the time
equation [16], one can see, from numerical analytbigt neglecting the terms in square
brackets multiplying?;1; andP»; does not introduce a relevant error in all theesaanalysed

in this paper. Hence, only the term dependingagns retained to give the analytical

expression:
-
tl“’“:S/%Boscosﬁ(coyltﬁ ST [19]
where:
fo1 1 1 ¢ 1.(2)
l,, = - dec 1, =|--4de [20]
“ E[Cboz(ﬁ)(cbo(ﬁ) CDO(LO)] 2 L{cp;(g)

The full analytical expansions for these integeaks found in the online Appendix.

2.2. Constant Inertial Acceleration

A constant acceleration in the inertial referenegnie can be expressed, in the&h frame, as

a function of the longitudk:

a " =" cosp,cos(y,~L) a,"=&" coB,sin(y,—L) a'" =" s, [21]



whereyy derives from the initial acceleration azimughat Lo, as:

Vo=0a,tL, [22]
Note that the initial azimuthy and elevatioif, are defined with respect to th&-h frame at

Lo. By substituting [21] into [6], and after some marigiion, one can obtain an expression

analogous to [17]:

282 3 .
ao"'g ’uao COSﬂO[ ( ol 2t 1 2)C03/o ( 24 12+|c) S”Vél

4, 2
R =Ryt " 2R c0s [ ~(Pud ot 5t | ) COY ot
+(Poles* 1esdSiny o] =sinBPQ be +Q b )
B 4, 2
R = P+ {080~ (P 5# 114 ) cO¥
(onlcs +l,+I 2c3)5iny0]+5in:8<Plo(Q e 7 Q obs l}
In In Bo4a02 2 2 H
Q" =Q,te T(l"'Ql +Q2)S|n/80|53 (23]
B,'a,’ .
Q" =Qute" =Y (1401 +QlJsing).

where the integral termd, .., |, l,;are given in the online Appendix. Similarly, the

first-order perturbative term in the time equaticanslates into:

a8 s _cosy, (1+ PR, sinL,) . _sinl,
_3\/;BO cosﬁo{ > {( 2t Pdod - —(Do(Lo) |12}+smy{ls3 CDO(LO)l 1;}

2.3. Constant Tangential Acceleration

A constant acceleration along the tangential dwaatan be expressed, in thé-h frame, as

a function of the longitudk:

o g P,sinL - P, cod. ot =gt P, sib+P, cos 3
D ? D

a,
whereD is expressed as:

0 [25]

D =1+ P?+R2+2(P,sinL+P, cog ) [26]
Again, by substituting [25] into [6] one obtains:



L (2Bt 1 B
AT L{Do(ﬁ)(fbo(ﬁ) %(L)zjd[’

=P+ B [ 2ARotSiN) o)
4 8Dy(£) @ (1) o

Py =Pyt Bt [ 2Py ¥ OSL)
H L Do ([’)(Do([’)
Q' =Qy,
Q' =Qy

Do is simply D evaluated withP1=P3y and P,=P,. The three integral terms are more

conveniently expressed with respect to the truematypd and eccentricitye, assuming that

O=L-(Q+w):

L 2 6 2
J- 1 ( 2 B zjdﬁzj-\/“eo +2e0cos9dz9:|a
, Do(£)( @ o(£)

. () o 5 (1+ecosd)
¢ P,+sinc :
£ D, lz) q)o( 2 dz :S|n(Qo +%)IP1+ COS(QO-I_C‘)O) ez [28]
L
P,, + COSL _ :
dz =cos(Q. + l,,—sin(Q,+w,)I
L{DO(L)CDO(L)2 (Q + ) oy = sin(Qo+ )l
where
0
_ g, +cosd
| = dd
" g[\/1+eoz+2e0cos9(1l-eo co#)’ 29]
29
) .
. :J. sind d2

5 \1+e7 + 2 cos?( te, 0s9)
The primitives ofl,, Ipzandlp, are available in closed form and are reporteche dnline
Appendix. Note that in [16] and [17] of the onliA@pendix there are terms that represent
incomplete elliptic integrals of the first and seddkind, represented &sandE respectively.
In this work, E andF are conveniently evaluated numerically using @er'ls Duplication

Algorithms (Carlson 1979). Rearranging the terms[2@], one obtains (omitting the

expressions foQ; andQ,):

ZB 2a03
a=a+e—221,
% U
B 46102
P = Py £270 0 (sin(Q,+ )1+ CO4Q o+ )1, ) (30

u
B4a02
=255 (o ) e (@01, )



In the case of tangential thrust, in the first ordem of the time equation [16], one has terms
that depend on the above-mentioned elliptic integrahich appear in [28]. After some

manipulation, one would obtain:

5

t(e)— 35f I3| (9) -

[31]
dd

1 (6e0 + 26 cos? + 4co§)lpl(ﬂ) +
®,(9), 4sin79(1—e02)lpz(ﬂ)
Expanding the terms in the integral, for exampt#sidering onlyl, (as in Eq. [16] of the

online Appendix), the following integral emerges:

g

d?

1 E(ﬁ de, ]+ 1 F(ﬁ de, ]_\/1+e02+2eocos9eosin9

Y- [—eo 2(tre)) v (2'(1ve) )  (1-e) (L+e,cow)

[32]

g 48 J  4g
eE[2(1+%de§, TF[2(1+%f

Note that the termsj 5 jdﬂ are not available in
5 (1+e,cosd) 5 (1+e cosd)

closed form. Similar considerations apply to the terms in [31fn@pg onlp; and Ip;.
Therefore, in this case, it has been chosen to numerically integeatxphession fot; in
[16] with a quadrature method. Numerical tests have shown thaetbyg the number of

integration nodes at 6 per revolution, adequate accuracy is achieved

2.4. J> Perturbation

The inhomogeneous gravity field of the Earth is usually mededis a series expansion of
harmonic functions whose coefficients are experimentally derived in orderatoh the
observed motion of satellites. The strongest contributiomeantotion of an Earth-orbiting
satellite is given by the first zonal harmonic term, also knaedy term (Battin 1987). The
effect of theJ, term can be expressed as a perturbative term in the Gauss variational
equations. In particular, the components of dhgerturbation in the-6-h frame can be
expressed g&echichian 1997):

10



o % = IR [ 12

(Q,cosL-Q, sirL)” - %(D‘%L)

2B%a* | G2
1213, R? - i
a,” =ﬁ(@ cosL +Q, sinL)(Q, cos -Q, sih)®d*(L) [33]
64, R -
a,” = BIL81(32234 (Q1 cosL-Q, SmL) ( =Q _Q22)¢4( L)

whereR is the planetary radius allis:

G=1+Q°+Q, [34]
By substituting [33] into [6], and with the procedwpreviously described, one can write the
first-order variation of the equinoctial elementsedo thel, perturbation. In a compact form,
this can be expressed as:

an =a, + ‘9J2 ﬁ I Ja(LO’ L, PlO’ P201Q101Q 2()
o o

1
F)lJz = Plo +e @ I IR (LO' L, PlO’ on’Q mQ 29

0 =0

1
PzJ2 =Pyt £ @ | IR, (LO’ L. P P20Q16Q 2<) [35]

o Bo

3 1_Q1(2) _Qzé |
4GoBo4

51 Q1c2) — Q2(2)
4GoBo4

QlJZ :Q10+£ JQI(LO’L’P10’P20'Q10Q2()

J, —
Q22_ 20+£

I JQ, (Lo’ L, P, P Q10Q 2()

where &% is defined ase” = J,R%a,”. Gyis G, as in [34], evaluated witl®;-Qyo and

Q2=Q2. The integral terms are represented as:

11



'TCDS L [12(Posinc - R cox:)( 18Q,, sin-Q,, cos)’ -G
" +96(, (£) (Q,o cOSL —Q,, i) (Q,, cos+Q,, sin)
L 12cost®, (L) (GOZ— 12Q,, St -Qy, 005)2)+

i = [ @5 (£)| 96(Rg+ (1 D4 (£)) sinc) (Qyo cO% = Q0 SIE)(Q 4 COS+Q , Sif) + |di
. 48P, (Q,, cost - Q,esinc)’ (2-G,)

Vo

12sinca, (L) ( 14Q,, St -Q,, cos)’ —Goz) +

lJPz = JL.CDO (L) 96(P20+ (1+CDO(L)) COi) (Qlo CO% -Q, Siﬂ) (Q 20 CA5+Q SH) +1dc
. 48P10 (Qlo CosL _on Sim)z( 2_GO)

L
|1q = [120,(£)(Qy cOSL ~Q, sifT) simd .
L

L
i, = [ 120, (£) (Q COSE ~Q,, i) cosdL
L

[36]

Their analytical expressions are reported in tHenerAppendix. Note that there is no linear
component inL in the expression of;; (given in Eq. [19] in the online Appendix),
confirming the known result thab is not inducing any secular variation of the semaijor
axis and thus the energy. There is, on the othed, e short-term periodic variation abver
one orbital revolution. The remaining equinocti@neents (see Equations [20], [21], [22] and

[23] of the online Appendix), present both a shert periodic variation and a secular one

which is linear with respect o

2.5. Superimposition of Perturbations

It has been assumed that the perturbing acceleraismall, and consequently that the
variation of the orbital elements induced by thestprbation will similarly be small. For
example, one can assume that the variation of thigab plane due td, and out-of-plane
thrust will be small and therefore the Equation][2dr the inertial acceleration is still
applicable. In this sense, it is also possible it@drly superimpose the four analytical
solutions shown in the previous sections to obtainanalytical expansion for the case in

which these perturbations are acting together:
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a = a, +£rz9ha1rz9h +£Inalln +£talt +£J2a132
PltOt =Rt grﬁhpnr&h +€mp11|n + gtpltl"' gjzpliz
PztOt = F)zo-"‘Erﬂhl:)zfﬂh +£InP21In "'‘Etpztl-i"gjzl:)zjl2

QltOt = Q1o+‘€n9h 11n9h +e" 11In +€tQ1t1+€J2Q 112
taot =Q20+£J19h 2;z9h +€InQ2LIn +€tQ21t +€J2Q21J2

tot — rghy rdh Ing In ty t Jo4 J
1 =t + 7"+ + £ + %t )

[37]

3. Accuracy of the Analytical Expansions

This section contains an analysis of the accuraxy @mputational cost of the analytical
formulae presented in the previous section. Acgueatd computational cost are evaluated
against a numeric integration of [6] with differantegration schemes and accuracies. An
initial elliptical orbit, whose orbital parameteaise given in Table 1, is propagated under the
combined effect of thd, perturbation, an acceleration along the tangedtiaction of 1¢
m/s* and an inertial acceleration of 4@n/< (equivalent to solar radiation pressure acting on
a spacecraft with an area to mass ratio of 1/4 3kgat 1 AU).

a e i 1 Q|lw| 0
24478 km| 0.73| 6° | 0° | 0°| O°

Tablel: GTO orbital parameters

At first, the motion is propagated for an arc-ldngip to Z and the performance of the
analytical formulae is evaluated against three migak integration schemes. This first
analysis provides an evaluation of the suitaboitghe analytical formulae as fast integration
method to be used in the orbit averaging that bellpresented in section 5. The numerical
integration schemes are: a Gauss-Legendre quaelrbdumula with a number of nodes
between 4 and 24, a Modified Euler method with mlber of equally spaced steps between 4
and 16, and an"Border Runge-Kutta method with 13 steps (RK8(7XB3)nce and Dormand
1981). Note that the Modified Euler evaluates titegrand function twice per step, therefore
the number of function evaluations is double thenber of steps. For each method, the
integration error is computed as the differencewben the analytical formulae and a
numerical integration performed with MATLABode113, implementing an Adams-Bashfort

predictor-corrector method, with relative and absstolerances equal to 10
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Error on Semi-major axis Error on Semi-major axis
T ; T T

10 : 10° :
— Analytic : — Analytic
G-L 4 nodes Mod. Euler 4 steps
10 H . G-L 8 nodes : E 10§ Mod. Euler 6 steps
G-L 10 nodes Mod. Euler 12 steps : e
100 G-L 16 nodes : . ] 10t Mod. Euler 16 steps =~~~
0 G-L 24 node$ : ‘ 3 0 RK8(7)13 S
——.
o :
1 o 0

10 S 4 10
—_ S .f{
£ 15° -~ E
© - S !
< ."

1074 E

107 4

10°F 4

10° - 10° |

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Arclength [rad] Arclength [rad]
a) b)

Fig. 1: Comparison with numerical integration: error on semi-major axis. a) Gauss-L egendre b) Modified Euler and
Runge-K utta.

Fig. 1a shows the error on the semi-major axis. ©ae see that the Gauss-Legendre
integration has a rather noisy behaviour alreadysfmrt arc-lengths; only the case with 24
nodes shows comparable accuracy to the analytropglbgation. Moreover it has to be noted
that Gauss-Legendre quadrature will, at best, hlagesame accuracy of the analytical step
since it is numerically calculating the same ingé¢gforms. Fig. 1b shows a similar
comparison with the Modified Euler and RK8(7)13 huets and leads to analogous
conclusions. The Modified Euler integrator givedaesults only with a high number of
steps. The RK8(7)13 scheme is extremely accuratshiort arc-length, but as this increases,
the numerical integral quickly diverges from theetrsolution. Fig. 2a, Fig. 2b and Fig. 3a
plot the summary of the maximum errors on semi-majas, P; and time respectively, and
clearly show the better accuracy of the analytirapagation. Only Gauss Legendre with 24
approaches the same level of performance but itgoatational cost, as shown in Fig. 3b, is
almost three times higher.

Maximum error on Semi-major axis Maximum error on Parameteﬁ P
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Fig. 2: Comparison with numerical integration: maximum error on: a) semi-major axisb) Ps.
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Fig. 3: Comparison with numerical integration: @) maximum error on time b) computational cost.
Note that, in this comparison, the analytical folaeurequire the computation of relatively
expensive elliptic integrals. If a constant accalen in ar-6-h frame is considered instead
the computational cost is about a quarter of that@nstant tangential acceleration.
With a generic control profile as described in &ec#, at each revolution one would have to
perform as many analytical propagations as the ewurabthrusting and coasting arcs. One
can argue that in such a case, the cost of theytaral propagation might no longer be
advantageous compared to other methods. In antgberthe motion is propagated for one
revolution under the effect of a tangential thrigst an arc of length 243 followed by a
coasting arc of length/3 (with J, only), another propelled arc of length 2/&nd finally
another coasting arc of lengtti3. Therefore, there are 4 separate propagationbeto
performed with the analytical formulae. This isiateresting case as it mimics the case of a
bangzero-bang control, as described in Section 4. d¢muracy and computational cost of
the analytical solution are compared to a fully ewical integration performed with Gauss-
Legendre quadrature. Two slightly different techusig| are tested: in the first one, the motion
is propagated without splitting the integratioremal in the three discontinuous points; in the
second one, the orbit is split into four interv@s is done for the analytical propagation) and
Gauss-Legendre quadrature is applied to each of.thbe number of nodes for each interval
is chosen such that the number of nodes is comigatabthe first case when a single
integration is performed. In particular, quadratimenulas 16 and 24 nodes have been tested
for the single interval case; for the split intdrnease, three combinations of 5+5+5+5,
7+3+7+3 and 6+6+6+6 nodes were tested.
Fig. 4 and Fig. 5 show the maximum error on sempmaxis and time. Even in this case, the

analytical propagation is more accurate than thearical quadrature. Only the Gauss-
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Legendre quadrature with 6+6+6+6 nodes displaysnaparable or lower error on the semi
major axis (see Fig. 4a), although it fares worsthe other cases. In terms of computational
cost (see Fig. 5b) only Gauss-Legendre with 16 sodecheaper than the analytical

propagation, while the others are more expensive.

Maximum error on Semi-major axis Maximum error on Paramete{ P

GL6+6+6+ GL6+6+6+6~

GL7+3+7+3 GL7+3+7+3

GL5+5+5+5-

GL5+5+5+5-

Method
i
Method

GL24r GL24r

GL16F GL16-

Analytict Analyticr

i i i i

0 10 10° 10 10 10° 10 10
10 AP,

Aa [km] 1

a) b)

Fig. 4: Comparison with numerical integration on discontinuous arcs: @) maximum error on semi-major axisb)
maximum error on time.
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a
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Fig. 5: Comparison with numerical integration on discontinuous arcs: @) maximum error on time b) computational
cost.
3.1. Accuracy vs. Initial Semi-major Axis and &

In this section, the behaviour of the error of Hmalytical formulae is investigated with
respect to the initial semi-major axis and the nitagle of the perturbing acceleration. This is
assessed by computing the error accumulated oweoudnit as a function of the magnitude of
the perturbative acceleratierand of the semi-major ax& of the initial orbit. A number of

initial Earth-centred orbits with eccentricity Oahd variableay were propagated with
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different ¢, aligned along the tangential direction. Althougére, for simplicity, only the
tangential acceleration case is considered, the samsiderations are applicable to the other
perturbative accelerations. Fig. 6a shows the @mothe semmajor axis relative tay, as a
function of ay itself ande. One can see that for a large initial semi-majds ande = 10°
m/s’ the error grows above 1%. However one should denshat 1G m/< is a performance
level hardly attainable with current electric prigpon technology. If the acceleration is
instead in the range of @o 10° m/<, the resulting propagation error remains belovd0.0
for relatively large orbits with semi-major axis tgpabout 10km. Note also that all orbits in

the LEO to GEO class are integrated very accuratéty a relative error lower than 0

—€ error analysis: relative error on a —¢ error analysis: Parametey P —€ error analysis: relative error on Tin
% Y & Y 1 % 4
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\0\) a\‘logez\\e%l\o 7 Y %\Qo 3\90:‘32\% o0y
05| 20, )
— 10—4\ ‘0001\:0*\@ 001 — 10" \e 0]\""’0 — 10" Mg&i:o%
Y e~ 00 Y \ Ds\r Di\ﬁ.ooo; R .0004]
E \ Os\m “1\000% §, Te-0y e»u\tE é
W qgSle-o7 Te- %\E W 45 K}E -04 w 45 Te-
10 ﬂ\“ﬁ(\ os_] 1070y, g Te0z ﬂé\m 10
e — fle-06 e~
e T e i
10° By 10° e i 1wl [
4 6 8 10 4 6 8 10 4 6 8 10
a [km] x10' &, [km] x10' a, [km] x10'
a) b) c)

Fig. 6 a): Relativeerror on a over onerevolution w.r.t. a; and ¢. b): Error on P, over onerevolution w.r.t. a;and &. ¢):
Relative error on time over onerevolution w.r.t. agand .

A similar behaviour can be observed in Fig. 6b Perand in Fig. 6¢ for the timé The
former is closely related to the orbit eccentrictyd therefore it is desirable to keep the error
per orbit below 18 to 10° which, as shown in the graph, can be attaineddstwases except
for highayp, largee combinations. Fig. 6¢ shows the error on timed#udi by the period of the
initial osculating orbit and one can see that thysbed orbit duration is also computed very

accurately with the error being just a fractiorthod total duration.

3.2. Propagation Over Long Arcs

In this section, the speed and accuracy of theyaoal first-order expansions is further
assessed on the propagation of long arcs. For@atie four expansion formulae, an initial
orbit around the Earth, with orbital parametersegivn Table 2, is propagated analytically
along an arc of length equal to 20 full revolutiomte difference between the value of the
orbital elements along the propagated arc and ekeltrof a full numerical integration of
Gauss’ variational equations is then computed W@ gihne errors differenca, AP1, APs,
AQ;, AQ,, At. Both propagations are run in MATLAB and the nuicedr integration is

performed withode113 with relative and absolute tolerances set t°10

17



a e |l |Q| w |0
7500 km| 0.1|6°| 0°|10°|0°

Table2: Initial orbit parameters

The following test assesses the accuracy and speé#te formulae in the worst case of
combined pertubations, as described in SectionTh&.modulus of the acceleration in the
6-h frame ise= 10" m/<, with « = #/2 and = #/6. The inertial and tangential components

have the same modulus.
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Fig. 7. Combined perturbations: a) error on semi-major axis. b) error on P,. ) error on Q,. d) error on time.

Fig. 7a shows that the error on the semi-major getizains contained below 0.3 km after 20
revolutions. Fig. 7b and Fig. 7c show that the i@l approximation oP; andQ; is very
close to the numerical solution with errors lowkart 5x1¢'. P, and Q, show similar
behaviours but are omitted here for the sake ofiseness.

Fig. 7d shows the difference on time of flight beem the approximation computed with

[37] and the numerical integration of the time dora The approximated time of flight
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accumulates an error that is less than 30 s a@tesrBits (a relative error of 5xT This
result demonstrates that the new approximationqseg in [16] reduces the error by one
order of magnitude with respect to the previousnidation proposed in Zuiani et al. (2012)
for the same ratio of control and local gravity elecation. Note that a good computation of
the elapsed time is essential, in particular whes lvas to use this datum to compute4kle
corresponding to the propagated thrusting arc.

In this test the analytical propagation requiredubl.5x10* s compared to 0.8 s of the
numerical integration witlodel13. If the tolerance on the relative and absolutereof the
numerical integration is relaxed to 1Qa relative error comparable to the one of the
analytical solutions), the CPU time fodell3 reduces to about 0.24 s, which is still two

orders of magnitude slower than the analytical pgapion.

3.2.1. Propagation Error Control Over Long Spiralling Arcs

The results in the previous sections show thaptbpagation error of the proposed analytical
solutions remains contained over relatively longsgrovided that is small compared to the
local gravity field (see Zuiani et al. 2012a). Honger spirals, however, an error control
strategy is required to preserve accuracy evesrf@il values oE.

The propagation error can be controlled by updativegreference conditiof, in [11] and
[16] everyn orbits. The update consists of taking the valueH(.) computed at the-th
orbit as the new reference conditigg for the followingn orbits. This technique, presented
in Colombo et al. (2009), can be regarded esctéfication of the analytical propagation.

The effectiveness of the technique is demonstrhgrd with the propagation of an initial
circular orbit with a semi-major axis of 7000 kmden the effect of an acceleratier 10*
m/s’ along the tangential direction. The length of phepagation arc is equal to 500 complete
revolutions. The frequency of updates is sat t0 20, leading to a total of 25 evaluations of
the analytical formulae. The analytical propagatiequired about 0.03 s while a numerical
one withodel13 (Adams-Bashfort, with tolerance set to’¥ptook about 7 s. Fig. 8a shows
that the relative error in the semi-major axis revadelow 5x10.
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Fig. 8: LEO propagation: a) relative error on semi-major axis. b) error on eccentricity.
Fig. 8b shows the effect of the rectification prgeon the error in eccentricity, which
remains below 1.2xI0after 500 orbits.
A further test considers the propagation from atiainGeostationary Transfer Orbit (see
Table 1) until escape condition is reached wittaeceleratiore = 10* m/<’ in the tangential
direction. This time, due the fact that the transg§emuch longer and will span a wide range
of different orbit energies, a simple dynamic ridemplemented to define the frequency of
rectification. As detailed in Table 3, the frequgit rectification is proportional to the value
of the semi-major axis. The analytical propagatias compared to a numerical integration
with odel13. The computational times are around 0.6 s foratmaytical propagation and 15s
for odell3. Similar to the previous case, Fig. 9 show, respely, the variation of semi-
major axis, the eccentricity and the relative eoorradius modulus and that on phasing. Fig.
9a shows a very good match between the analytrmhhamerical propagations, as can also
be seen in Fig. 9b for the eccentricity. The maschery good up to the last few revolutions
when the semi-major axis is very large and the ydical formulae become relatively
inaccurate. Fig. 9d shows the relative error omtloglulus of the position vector. The figures
show that the relative error remains below’ I6r a good part of the spiral and grows above
102 only towards the end when the semi-major axis grabmove 5x1Dkm. Fig. 9e shows
the phasing error as the angular distance betweeratlius vector computed analytically and
the one computed from the numerical integrationcés be seen this stays always below 10

rad.

Interval [10 km] a<3 3<a<85| 85<a<10| a>10

Rectifications/orbit 1 2 4 8
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Table 3: Rectification strategy

. . . . Eccentricity
Semi-major axis Eccentricity 1
10° 1 - — Analytic w. rectification
— Analytic w. rectificaton. = | | | Adams-Bashfort
—— Analytic w. rectification 0.8 L Adams-Bashfort
,E, ““““ Adams-Bashfort 0.6
X, (0]
© 10 04
0.2
0 : :
0 50 100 150 200 250 0 50 100 150 200 250 300 0 :
Orbits Orbits 250 260 270 280 290 300
Orbits
a) b) ©)

Relative error on modulus of radius Error on phasing

10°
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Orbits Orbits

d) €)
Fig. 9: GTO propagation: a) semi-major axis. b) eccentricity, wholetrajectory. c) eccentricity, magnification of last
orbits. d) relativeerror on radius. €) phasing error.

4. Discontinuous Control Profiles and Eclipses

In the numerical tests presented in the previoas®se a simple continuous acceleration was

considered. This section proposes a simple apprtadhtroduce bangero-bang control
profiles and eclipses.
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Fig. 10: Control pattern.

The interest is in the class of letwust transfers whose quasi-optimal control @ponds to
two thrust arcs. For this class of transfers, aasfolution can be divided into 4 sectors, as
shown in Fig. 10: a perigee thrust arc, an apogesst arc and two coasting arcs in between.
The former, of amplituddL,, is meant to alter the radius of the apocentrelevthe latter, of
amplitude4L,, alters the radius of the pericentre. The combféect of the two thrust arcs
can be used to control the inclination and the i@t of the pericentre. The variation of the
orbital elements along the thrusting arcs is comguwtith the analytical formulae. A plane
change is realised introducing a non-zero elevatinglef, andf.. The amplitude of the arcs
AL, and4L,, and the angle8, andp,, are the quantities to be controlled to matchdisired
terminal conditions. When a constant thrust is megufor each arc, the mass of the
spacecraftrx at the end of a thrust arc can be estimated asgutmé control accelerationis

constant along the thrust arc:
it

m, =me "% [38]

wherem is the mass of the spacecraft at the beginningeothrust arc. The new mass is then

used to recompute the control acceleration fonthé thrust arc.

4.1. Eclipse Modelling

In the case of long, multi-revolution transfersge tbffect of a solar eclipse might be
considerable if one takes into account the fact, tim example, during an eclipse the
operation of an electric propulsion system will, shtkely, have to be interrupted due to
limitations on power generation and storage. Moeepgclipses change due to the combined
effect of the motion of the Earth around the Suah thre variation of orbit size and orientation

due to engine thrust and other perturbative efféstthe case of a full numerical integration,
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eclipses are computed by checking shadow condiabesich step and eventually activating
or deactivating some kind of eclipse flag. Thisdedao discontinuities in the integrand
function. In an analytical approach, like the omeehproposed, one can however exploit the
fact that the entrance and exit points of the sivadone (for the sake of simplicity, no
distinction is made between umbra and penumbraittons) can be computed beforehand
and then the thrusting arcs can be updated acgbydi@ther authors have already proposed
a similar approach, see for example Kechichian 8&99n which orbits with eccentricity up
to 0.2 are considered; Colombo and McInnes (20ikb) applied a similar method but limited
to the planar case. In this work, a cylindrical miofbr Earth’s shadow is adopted (see Fig.

11), which is perfectly adequate in the case gfeecscraft in Earth orbit.

Eclipse exit point

J

Sun-Earth direction

Eciipse entry point
Fig. 11: Shadow model.

In order to identify the eclipse entry and exitrgsione has to find the true anomalies of the
geometrical intersections between the cylinder @red osculating orbit. The mathematical
formulation of this problem can be found in Escod#l65) and Vallado (2007) and will not
be repeated here. Starting from the osculatingtairielements and the current SEarth
vector, this formulation leads to a quartic equatio cosd, which can be solved either
analytically by means of Ferrari’s method, as isalm this work, or numerically with a root-
finding algorithm. Note that out of the 4 rootstbé quartic polynomial, two are spurious.
Once the shadow entry and exit points are knowa,aam correct the thrusting and coasting

arcs as shown in Fig. 12.
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Fig. 12: Thrust pattern with eclipseregion.

Apart from identifying the shadow regions, thisfmdation also allows one to analytically

compute the time spent in the shadow redign for each orbit.

5. Applications

This section presents a number of applicationdi@fanalytical formulae to cases of practical
interest. In particular, it will be shown how theadytical formulae can be effectively used to

implement an orbit averaging technique.

5.1. Orbit Averaging

In the previous sections, a set of analytical fdemdor propagating the perturbed Keplerian
motion was proposed. As a further step, it is psagoto use these formulae to compute the
average variation of the orbital elements over mmete revolution and to numerically

propagate the average orbital elements, as it n& do classical averaging techniques (see
Ferrier and Epenoy 2001, Tarzi et al. 2013). In pmeposed averaging technique, the

variation of the orbital elements is given by:

B =E, + £, (r.E(r). AL, (1) AL () B, (1) B (1)) dr
AE .

—_ 2

E =
9 T,

where E represents the vector of the averaged orbital @snAE,, is the net variation of

the orbital elements computed over a complete wdhaml andT,, is the corresponding

24



period. In some orbit averaging techniquag,, is computed by numerical quadrature of
Gauss’ planetary equations over the true anomalyofwitude). HereAE,, is provided by

the evaluation of the analytical formulae lat= 2t As shown in Section 3, this is
advantageous in terms of computational cost foomparable accuracy. The ternad ,,

ALa, E’p and ,73a are the control parameters mentioned in Sectianddare computed as a
piecewise linear interpolation with respect to tiftem nnues Nodal values, uniformly spaced

within the limits of the transfer period. For exdmpn the case oﬁp, one can write:

ALp (1) = i (tpr AL 51t) [40]
whereAL, is a vector containing the.ges Nodal valuest, is the vector which collects the
corresponding times at which the nodal values peeified, andfiyerp defines a piecewise
linear interpolation. The tests in Section 3 haveaaly shown that the analytical propagation
is advantageous over numerical quadrature everhenchse of discontinuous thrusting

profiles over a single revolution.

5.2. Spiralling with Solar Radiation Pressure and Eclipses

This section presents a comparison between theageersolution and the rectified solution
for the case of a long term propagation of anahpianar elliptical orbit (as in Table 4) under
the combined effect of a thrust acceleration altmg tangential direction, solar radiation
pressure (SRP) and Earth oblatendsgffect).

a E | i | Q 1) 0

20000 km| 0.5 09 09 O° 09

Table 4: Initial orbit parameters.

The initial mass of the spacecraft is 1000 kg, iaiglassumed that the engine deliverg N0

at a specific impulse of 3000 s. The cross sedi@a used to compute the SRP acceleration
is 1200 m, a value chosen so that the resulting force isiabalf of the thrust of the engine.
At departure, the Sun lies at the Summer SolstaetpThe propagation time is set to one
and a half years. The SRP direction is considepebet constant along an orbit, therefore
allowing the use of the formulas in [23] for a ctam inertial acceleration. The secular
variation in the Sun-Earth direction is used toatpdhe direction of the inertial acceleration.
Moreover, eclipses are introduced with the methoglpldetailed in Section 4.1 and the
consequent thrust interruptions are accounted Tibe averaged propagation is performed

with MATLAB ® ode23 which implements a Runge-Kutta integration methidte results are
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compared to a full numerical integration wittlel13, and to the analytic propagation with
rectification every orbit if no eclipse occurs wottimes per orbit if an eclipse is present. The
CPU time required by the averaged analytic propagatas 1.2 s while the full numerical
integration required about 100 s. The rectificatiequired about 7 s, showing the additional
advantage of the analytic averaging approach. Esa shows the lontgrm, monotonic
increase of the semi-major axis due to the tangktitrust. Fig. 13b shows a close up of a
portion of the curve. The dashed curve represémdull numerical integration, the dotted
curve represents the analytical propagation withifreation and the solid curve the average
solution. Note that the analytical formulas areleated only at the end of each revolution
and at the transition out of the eclipse. The fuimerical integration displays a short-term
oscillation ofa, due toJ, and SRP, a secular increment over a revolutior dveraged
solution captures accurately the secular componesiite the analytical solution with
rectification keeps track of the periodic composertthough in the figure only the value of

the semi-major axis at the eclipse times is plotted

X 1d*

Semi-major axis
2.4 T

X 10"

Semi-major axis
2.03! T T

—— Averaged analytic
|| -0 Analytic w/ rectification
- - - Full numerical
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2.4H Analytic w/ rectificatior)
- - = Full numerical
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Fig. 13: Spiralling with SRP: a) semi-major axis; b) Close-up.

Fig. 14a shows the long term variation of orbitetentricity due to the combined effects of

tangential thrust and SRP. Tangential thrust aleoeld produce a monotonic decrease of the
eccentricity, however, SRP adds a long-term ogciyfacomponent that is linked to the
rotation of the Sun-spacecraft vector. SRP alsalyres a small long term deviation of the
inclination due to the relative angle between tloépEc plane and the Equatorial plane, in

which the initial orbit lies, as shown in Fig. 14b.
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Fig. 14: Spiralling with SRP: a) eccentricity. b) inclination.

5.3. GTO to GEO Orbit Circularisation

The previous section demonstrates the advantagsiof the proposed analytical formulae
for the long propagation of spirals with discontins control profiles and eclipses together
with their use in conjunction with orbit averaginig. this section a further example will
demonstrate how to combine the control parameteris@resented in Section 4 with orbit
averaging to circularise an initial GTO into a GHOa specified transfer time. The initial
orbit parameters are as in Table 5.

a e Q| o | 6O
24505.9 km 0.725| 7r0°| 0° |O°

Table 5: Initial orbit parameters.

The target orbit is a GEO with zero inclinationgersfore a plane change of 7° is also
required. The time specified for the transfer i$ 2iays. Engine thrust is 0.35 N, with a
specific impulse of 2000 s. The initial mass of thgacecraft is 2000 kg and mass
consumption is taken into consideration duringtia@sfer using [38]. Four nodes each are
used to model the variation afl,, 4L, B, and S, leading to a total of 16 optimisation
parameters. The totaV is minimised while matching the final semigjor axis, eccentricity
and inclination, obtained through the analyticalgagator, with those of the target orbit:
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min AV
AL, AL, B, S,

st.

E(t,) = Egro

E(t;) =Eseo

[41]

This is basically a singlehooting, direct collocation method. The MATLABmincon-sqp

algorithm is used to solve problem [41]. The opsiation converges in 8 iterations and 25

seconds (on a Windows 7 platform), and the optichsaution has aV cost of 1.78 km/s.

This result compares well with that given, for afentical test problem, by the solver
MIPELEC (see Ferrier and Epenoy 2001), which ret@nV cost of 1.68 km/s in about 14 s
of computational time on a UNIX-based Sun workstatiTo compare the computational
times, one has to consider that MIPELEC is wriiteRORTRAN77 and a MATLAB code is

usually at least one order of magnitude slower #rmequivalent FORTRAN code.
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Fig. 15: Orbit circularisation: a) semi-major axis. b) inclination. c) perigee and apogee. d) perigee and apogee. €)
thrusting arc length. f) thrust azimuth and elevation.

Fig. 15a, Fig. 15b and Fig. 15c show the variattdnsemimajor axis, eccentricity and
inclination respectively. It can be seen that alamfities change monotonically from their
initial values to the target ones.

Fig. 15d shows the variation of perigee and ap@gekit is interesting to see that the perigee
rise gradually increases in speed. There is alsigght increase in the apogee radius due to
the amplitude of the apogee thrusting arc whickasipensated for in the last part of the
transfer by a perigee arc (see Fig. 15e), withsthiu the negative tangential direction. Note
that these behaviours are consistent with thetseshbwn in Geffroy and Epenoy (1997) and
Tarzi et al. (2013), even if here a much more siiiel model has been used.

Fig. 15f shows the thrust azimuthand elevatiorp in the t-n-h reference frame for the
perigee and apogee thrusting arcs. It shows thatafbogee arc always has a positive
tangential component (i.e. energy-increasing), evtile opposite is true for the perigee one
since it has to compensate for the apogee altitndeease. The plane change effort is
concentrated at the apocentre with an out-of-plem@ponent around 15°. Note that the
contribution of perigee thrusting to the plane dems only during the final part of the

circularisation.

6. Conclusions

This paper has presented a set of analytical faen@br perturbed trajectories under the
effect of a constant control acceleration, soldfaton pressure and effect. The proposed
approach is suitable for treating constant acceters in ther-6-h, n-t-h and inertial

reference frames. The accuracy of the analytichltisos was shown to be good for the
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propagation of relatively long trajectory arcs arduhe Earth, if the control acceleration
level is comparable to the one delivered by cur@ntthrust engines.

A rectification technigque was then proposed to mrihe propagation error and to accurately
propagate long spiralling trajectories. Finally, ibpyroducing a simplified parameterisation
for the thrusting pattern, the proposed approachk agplied to the optimal design of long
spirals with terminal constraints in combinatiortworbit averaging.

The good accuracy displayed in the experiment#s tasd the fast propagation speed make
the proposed analytical theory particularly suigalolr the global multi-objective optimisation

of low-thrust spirals.
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