Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Active network management using distributed constraint optimisation

Athanasiadis, Dimitrios and McArthur, Stephen (2013) Active network management using distributed constraint optimisation. In: 2013 IEEE Power and Energy Society General Meeting (PES). IEEE, Piscataway, NJ., 1 - 5. ISBN 9781479913039

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A fully distributed intelligence and control philosophy is needed for future flexible grids to facilitate the low carbon transition and the adoption of emerging network technologies. Future grids need scalable network management solutions in order to cope with the increase in uncertainty and complexity. Fundamental research in intelligent systems and network control will deliver the next generation of intelligent electricity network. This paper presents a network management function formalised as a Distributed Constraint Optimization (DCOP) problem, in particular power flow management. DCOP is an approach to negotiation and arbitration within decentralised control systems where conflicting control decisions arise. Furthermore, the problem will be visualized and decomposed as a factor graph which is a graphical presentation of factorization of a global function into a product of local functions. Additionally, a message passing algorithm, the max-sum algorithm, will be applied which can provide almost optimal results for decentralised coordination problems and limits the computation and communication problems.