Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Towards a methodology for design of prognostic systems

Aizpurua, Jose Ignacio and Catterson, Victoria M. (2015) Towards a methodology for design of prognostic systems. In: Annual Conference of the Prognostics and Health Management Society 2015, 2015-10-18 - 2015-10-24.

[img]
Preview
Text (Aizpurua-Catterson-PHMS2015-towards-methodology-design-prognostic-systems)
Aizpurua_Catterson_PHMS2015_towards_methodology_design_prognostic_systems.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (276kB) | Preview

Abstract

An effective implementation of prognostic technology can reduce costs and increase availability of assets. As a result of the rapidly growing interest in prognostics, researchers have independently developed a number of applications for asset-specific modelling and prediction. Consequently, there is some inconsistency in the understanding of key concepts for designing prognostic systems. This further complicates the already-challenging design of new prognostic systems. In order to progress from application-specific solutions towards structured and efficient prognostic implementations, the development of a comprehensive and pragmatic methodology is essential. Prognostic algorithm selection is a key activity to achieve consistency throughout the design process. In this paper we present a design decision framework which guides the designer towards a prognostic algorithm through a cause-effect flowchart. Failure modes, application characteristics, and qualitative and quantitative metrics are used to determine an appropriate approach for the stated problem. The application of the methodology can reduce the time and effort required to develop a prognostic system, ensure that all the possible design options have been considered, and provide a means to compare different prognostic algorithms consistently. The framework has been applied to different prognostic problems within the power industry to illuminate its effectiveness. Case studies are presented to show how the framework guides designers through the choice of prognostic algorithm according to system requirements. The results demonstrate the applicability of the methodology to the design of prognostic systems which consistently meet the established requirements.