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Abstract

Forecasts of the cost of energy are typically presented as point estimates; however

forecasts are seldom accurate, which makes it important to understand the uncer-

tainty around these point estimates. The scale of the differences between forecasts

and outturns (i.e. contemporary estimates) of costs may have important impli-

cations for government decisions on the appropriate form (and level) of support,

modelling energy scenarios or industry investment appraisal. This paper proposes

a methodology to assess the accuracy of cost forecasts. We apply this to levelised

costs of energy for different generation technologies due to the availability of compa-

rable forecasts and contemporary estimates, however the same methodology could

be applied to the components of levelised costs, such as capital costs. The estimated

“forecast errors” capture the accuracy of previous forecasts and can provide objec-

tive bounds to the range around current forecasts for such costs. The results from

applying this method are illustrated using publicly available data for on- and off-

shore wind, nuclear and CCGT technologies, revealing the possible scale of “forecast

errors” for these technologies.
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Highlights

• A methodology to assess the accuracy of forecasts of costs of energy is outlined.

• Method applied to illustrative data for four electricity generation technologies.

• Results give an objective basis for sensitivity analysis around point estimates.
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1 Introduction

Forecasts of costs of energy technologies are often used to provide narratives for energy

development, and are typically presented as a point estimate. This paper proposes a

methodology to assess the accuracy of forecasts of energy costs. Our methodology con-

siders comparable data on historic cost forecasts and matched “contemporary estimates”

to generate “forecast errors”1. In addition, quantifying these errors will provide a range

around point estimates of costs, which are important inputs to policymaking as well

as in empirical work (e.g. using Integrated Assessment Models (IAMs)). This would

provide an objective basis for understanding the accuracy of point estimates and for

guiding sensitivity analysis.

IAMs have been extensively used to develop energy scenarios for countries and regions

across the world (Edenhofer et al. 2013). Such models are particularly useful as (among

other factors) they include economic criteria of each technology option to form energy

scenarios which are endogenous to the model (Krey & Clarke 2011). Despite this, IAMs

have some limitations which have been previously noted, for instance not capturing the

heterogeneous aspect of electricity from different technologies (Edenhofer et al. 2013). A

number of detailed elements affecting the future supply of energy are included in these

models, including (but not limited to) future values of costs for different technologies.

IAMs typically focus on long term scenarios e.g. greater than 25 years, and make use of

a given set of assumptions, including point estimates for costs of different technologies.

Comparisons across energy costs, such as levelised cost of energy (LCOE)2, are often

used to inform a government’s stance on particular technologies, such as the level of

1We use the term contemporary estimate throughout this paper to refer to the known cost for a
generation technology in a specific year. Our use of this terminology is consistent with e.g. Gross et al.
(2013). Where there is more than one unit of a generation technology developed in a year, publicly
available data are likely to represent the average for that technology in that country, see Grubler (2010),
although this would not necessarily be the case for the use of these methods with proprietary data. We
thank an anonymous referee for requesting this clarification.

2This is the “the discounted life-time fixed and variable cost of a generation technology in euro/MWh”
(Edenhofer et al. 2013, p. S17)
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financial support a technology may require to be “competitive” with other technologies

(Allan et al. 2011). Some recent work has attempted to refine the costs for technologies

which might be used in IAMs by, for example, estimating “system-level” costs for variable

technologies (Gross et al. 2007), while others assess the marginal economic value of

changes in generation technologies (Borenstein 2012). Each of these approaches however,

produce “point estimates” for the costs of each technology, and do not capture the

possible range within which the future costs will lie, i.e. they ignore the issue of forecast

errors.

Section 2 introduces the method, which has its origins in the assessment of eco-

nomic forecasts (Granger 1996), discusses the alternative measures of costs to which the

methodology could be applied and the data used for the empirical application in this

paper. Our methodology could be applied to any energy cost, including capital or fuel

costs, however due to data availability the empirical example we use in this paper uses

the LCOE for four technologies. The empirical results from the illustrative example give

an indication of the accuracy of previous forecasts and objective bounds to the range of

uncertainty around current forecasts of LCOE. The results from this illustrative applica-

tion using LCOEs are set out briefly in Section 3, before a discussion of the results and

method in Section 4. Section 5 sets out conclusions and directions for future research,

including applying the proposed methodology against other measures of costs.

2 Methods

2.1 Measures of forecast accuracy

There is a substantial literature on techniques for assessing the accuracy of economic

forecasts. This literature, for example, has shown the accuracy of forecasts made by pri-

vate organisations compared to public organisations, the accuracy of forecasts produced

by different multinational organisations (e.g. Granger (1996), Pons (2000), Loungani
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(2001)) and the accuracy of forecasts over different horizons, i.e. the duration between

when the forecast is made and the point of time to which the forecast relates (e.g. Ashiya

(2006), Allan (2011)). This literature has developed a number of empirical measures

that can be used to gauge the accuracy of a forecast, including the mean absolute error

(MAE), root mean square error (RMSE), root mean square percentage error (RMSPE)

and mean absolute percentage error (MAPE).

In our application, the MAE for each generation type g can be calculated as the

absolute mean of all “forecast errors”, i.e. the distance between the forecast and the

“contemporary estimate” of the cost. In Equation 1, yfp−h is the forecasted cost relating

to year p made at a forecast horizon of h years, e.g. the cost for onshore wind in 2010

made in 2005, where h=5. yagp is the contemporary estimate of the cost for technology g

in period p, and N the total number of paired cost forecasts and contemporary estimates

for technology g. The further from the date of the forecast that the forecast is evaluated,

one might expect errors in the forecast to be larger. Therefore we might want to produce

evaluations for each forecast horizon, h, e.g. 5,6,7,..., k years. This being the case, for

each h, we would calculate3:

MAEg =
1

N

N∑
n=1

|yfp−h − yap | (1)

The root mean square error (RMSE), when compared to the MAE, places slightly

more emphasis on larger errors due to the squaring process, as seen in Equation 2. This

can be useful for forecasters or analysts who are concerned about larger errors.

RMSEg =

√√√√ 1

N

N∑
n=1

(yfp−h − yap)2 (2)

Percentage (or proportional) errors are an alternative measure of the accuracy of

3An alternative approach, although notationally messier, would be to introduce a new subscript in
Equation 1 denoting the forecast horizon being evaluated.
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forecasts. These take into account the scale of errors relative to the contemporary

estimates and the Root Mean Squared Proportional Error (RMSPE) and Mean Absolute

Proportional Error (MAPE) are shown in Equations 3 and 4.

RMSPEg =

√√√√ 1

N

T∑
n=1

(yfp−h − yap)2

yap
× 100% (3)

MAPEg =
1

N

N∑
n=1

|yfp−h − yap |
yap

× 100% (4)

2.2 What cost measure is appropriate?

In principle, the methods outlined above can be used to calculate and analyse forecast

errors for any energy costs for which there are forecasts and contemporary estimates, i.e.

a contemporary estimate for a given year of a forecasted cost for a specific technology,

made in a year prior to which the forecast relates). The precise cost figure to which

the method can be applied is likely to depend upon the availability of comparable data.

For example, capital costs (i.e. including development, construction and installation)

would appear to be a useful measure. For many technologies, these will be a significant

portion of total project costs. However, forecast and contemporary estimates of capital

costs can be difficult to find in the public domain, with both typically known only to

the developers of that technology. We return to this point in Section 4.

In the absence of such proprietary data, an alternative cost figure – and what we

use in the empirical example which follows – is the LCOE. As described above, these

are widely reported, and so easier to access the matched forecast and contemporary

estimates that our methodology requires. There are some issues however in using LCOEs;
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specifically they are based on an aggregation of individual cost elements, such as capital

and fuel costs, as well as production data. If there were forecast and outturn values

for each element, the analyst could decompose the LCOE “forecast errors” in terms

of the contribution of its individual components. This may be insightful, as elements

within the LCOE could differ between their forecast and outturn values in ways which

offset, or exaggerate their individual errors. For example, (Harris et al. 2013, p. 440)

noted that observed increases in construction cost estimates can have a “dramatic”

effect on the estimated future LCOE. However, in the absence of comparable forecast

and outturn data either for all components of the LCOE or just capital costs, in the

empirical illustration of the methodologies which follows, we use LCOE as our measure

of costs4.

2.3 Data

In order to implement this approach we require two types of cost data; forecasts of the

costs of energy and out turn or realised costs of energy (which we refer to as “contempo-

rary estimates” in this paper). In the illustrative empirical exercise which follows we use

forecast data on the levelised costs of energy from International Energy Agency (1989,

1992, 1998, 2005, 2010). While these IEA reports provide forecasts of the levelised cost of

energy, and its components (e.g. capital cost, fuel cost etc), they provide no information

on the “contemporary estimates” for any of these costs.

The IEA presents its LCOE forecasts based on the forecasts it receives from par-

ticipating countries, thus producing a range of estimates for multiple technologies for

a single year and at a given forecast horizon. Table 1 shows the year of publication

of each report matched with the forecast year for that report; it can be seen that the

forecast horizon varies from five to a maximum of eight years from the publication of

each report. The forecasts for levelised costs used in this paper for a given year were

4We thank a referee for drawing our attention to this empirical challenge with using the LCOE
measure.
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obtained by averaging the costs across EU countries for each technology for the year to

which the forecasts relate. This gives us a single forecast estimate for generation type g

in year p, which was produced in year p−h. Thus while country specific evaluations are

desirable when implementing this approach in practice, for this illustrative application

we collapse cross country variation into an EU average for each technology.

[Table 1 here]

We obtained our “contemporary estimates” of levelised costs of energy from Gross

et al. (2013)5. This report provides “contemporary estimates” of the total levelised

costs of energy for the technologies identified earlier, but does not provide estimates for

individual cost components such as capital costs, fuel costs, etc. It is for this reason the

analysis which follows is undertaken using levelised costs of energy, rather than individual

cost components. It is worth noting that while Gross et al. (2013) does contain forecast

estimates for the levelised costs of energy, these relate to the post 2010 period for which

we have no “contemporary estimates”, as yet. For some technologies, contemporary

estimates of the LCOE were not available for the forecast year, and so were linearly

interpolated from data for the preceding and following year; again given the illustrative

nature of this empirical exercise this seems a reasonable approach.

The levelised costs for both forecast and contemporary estimates utilised a 10%

discount rate and all currencies were rebased to 2011 GBP using the UK governments

GDP deflators (HM Treasury 2013).

[Figure 1 here]

Figure 1 shows the quantity of data used for the analysis. In all cases, the total

number of paired forecast and actual values for each generation type does not exceed

5These data, in turn, come from a combination of sources, specifically Mott Macdonald (2010, 2011)
and ARUP (2011). The authors of the paper are very grateful to the authors of this report for sharing
the data underpinning their report. Errors and omissions in the use of the data however remain our
responsibility.
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three. Due to this small sample size, the results can only be considered illustrative of

the value of the methodology for assessing the accuracy of forecasts of levelised costs of

energy.

3 Results

3.1 Absolute errors

Figure 2 shows the results of the MAE for each generation type across all matched

forecasts and actual values of the levelised cost of energy. As expected, the largest MAE

is for offshore wind technology at greater than £50/MWh6. CCGT and Nuclear have

fairly similar errors of around £20/MWh, while onshore wind has the smallest MAE.

Figure 3 shows the RMSE. Only subtle differences can be seen compared to Figure 2.

[Figures 2 and 3 here]

3.2 Percentage errors

Figure 4 shows the results of the MAPE calculations. The larger observed “errors” are

present for Nuclear and CCGT technologies, while – due to the errors being rescaled by

the absolute value of the LCOE forecast – offshore wind returns a smaller proportionate

error.

[Figure 4 here]

Figure 5 shows the RMSPE for each technology. These results are similar to the

MAPE, however the offshore wind error is larger due to the presence of one larger error.

As already mentioned in Section 2 the RMSPE places greater emphasis on larger, single

errors.

[Figure 5 here]

6Recall, all values are reported in 2011 prices.
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4 Discussion

4.1 Implications of results

The illustrative results presented in Section 3 reveal that Offshore wind showed the

greatest MAE, RMSE and RMSPE while the MAPE was greater for Nuclear and CCGT.

These results suggest that technologies considered “mature”, such as nuclear and CCGT,

display forecast errors which are higher than both on- and offshore wind in proportionate

terms. The finding that there are also quantifiable MAEs in forecasts of levelised costs of

between £15/MWh and £25/MWh for “mature” technologies like onshore wind, CCGT

and nuclear for a relatively short forecast horizon – one that is far shorter than the

long term typically considered in IAM scenarios – may be important for the range of

sensitivity analysis that can be carried out using IAMs.

Technologies in their infancy typically suffer from an apparent paradox: at this early

stage in the development of the technology, policy makers will place great emphasis

on having cost forecast. Unfortunately, this is when the predictions are often at their

weakest due to a lack of information on the learning rates in the development of these

technologies. It is also possible that past forecast errors will not necessarily be a good

proxy for future errors. One obvious example of this is where there are structural breaks

in key markets, for example with the oil shocks of the 1970s. Such events may lead to

errors estimated using current data to underestimate future forecast errors7.

4.2 Empirical limitations

All of the data used in the illustrative application utilises secondary sources, and was

not collected for the sole purpose of this study. In some years the data suffers from a

lack of data points, and in a few cases relevant contemporary estimates were linearly

7Nevertheless, we argue that past forecast errors do provide an objective guide for sensitivity analysis
around point estimates, and that this information can be useful in evaluations (e.g. using IAMs). We
thank a referee for alerting us to this issue.
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interpolated from the surrounding years. Overall the total volume of data is not large;

ideally there would be a considerable number of contemporary estimates to match to

more detailed forecasts, with numerous different (and conceivably longer) forecast hori-

zons over which to assess the accuracy of these forecasts of future costs (as presented in

Table 1).

Future empirical applications of these methods are likely to be able to utilise a

more extensive database than we have access to at the moment, in particular access to

proprietary “contemporary estimates” would allow a more detailed comparison of cost

forecasts with realised costs. In particular, analysis of the forecast errors for each of the

components of levelised costs would be an interesting area of future work. However, and

largely for reasons of commercial confidentiality, such data are very difficult to access.

Nevertheless, when using non-proprietary data, it would be desirable to have actual

outturn data.

The only study we are aware of that provides data on the components of the outturn

costs is Koomey & Hultman (2007), in addition to focussing on only one technology and

one country, the data released related to construction projects that took place, in some

cases, up to 35 years before. These data relate only to Nuclear power and only to the

US and as such are not compatible with any of the forecast data that we use here. The

paucity of data on the outturn values of these costs suggests that this is an important

area of future research, particularly given that the IEA produce forecasts of these cost

components.

5 Conclusion and policy implications

This paper has presented a methodology to assess the accuracy of forecasts of costs

of energy. Our methodology requires historical data on forecast and “outturn” costs

of energy, which would ideally be available for different technologies, and covering a
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range of (short and long-term) forecast horizons. The methodology outlined here was

demonstrated using data on the levelised cost of energy for Nuclear, CCGT and On-

and Offshore Wind, while the methodology could in principle be applied to any forecast

cost which has comparable outturn data.

We find that, in line with expectations, offshore wind forecasts have larger mean abso-

lute errors. Percentage errors proved to be different however; “mature” technologies such

as CCGT and nuclear had the greater errors when compared to wind technologies. Con-

cerns about the data used have been thoroughly addressed, and additional applications

and testing of the methodology with a more comprehensive dataset is recommended.

The data would preferably be primary data, cover a range of energy technologies and be

consistent with forecasts of LCOEs for a range of forecast horizons.

The output of this methodology, in addition to its usefulness in giving some context

to point estimates used by policy-makers, has the potential to improve the output of

analytical work in this area (e.g. using IAMs) by enabling an objective understanding

of the likely range of LCOE forecast errors (or as discussed earlier, for other measures

of costs of energy). More fundamentally, it would be interesting to use the scale of

“errors” from this analysis in applied models like IAMs to understand the importance

of uncertainty surrounding forecasts of technology costs in energy scenarios.
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6 Tables

Table 1: Forecast horizons for all data contained within the IEA reports International
Energy Agency (1989, 1992, 1998, 2005, 2010).

Published Year Forecast year Forecast Horizon (years)

1989 1995 6
1992 2000 8
1998 2005 7
2005 2010 5
2010 2015 5
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7 Figures

Figure 1: Summary of the usable forecast and contemporary estimate data
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Figure 2: MAE by generation technology.

Figure 3: RMSE by generation technology.
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Figure 4: MAPE by generation technology.

Figure 5: RMSPE by generation technology.
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