
Journal of Medical Systems manuscript No.
(will be inserted by the editor)

A Context-Aware Application to Increase Elderly Users Compliance with
Physical Rehabilitation Exercises at Home via Animatronic Biofeedback

Borja Gamecho · Hugo Silva · José Guerreiro · Luis Gardeazabal · Julio Abascal

Received: date / Accepted: date

Abstract Biofeedback from physical rehabilitation exerci-
ses has proved to lead to faster recovery, better outcomes,
and increased patient motivation. In addition, it allows the
physical rehabilitation processes carried out at the clinic to
be complemented with exercises performed at home. How-
ever, currently existing approaches rely mostly on audio and
visual reinforcement cues, usually presented to the user on
a computer screen or a mobile phone interface. Some users,
such as elderly people, can experience difficulties to use and
understand these interfaces, leading to non-compliance with
the rehabilitation exercises. To overcome this barrier, latest
biosignal technologies can be used to enhance the efficacy
of the biofeedback, decreasing the complexity of the user
interface. In this paper we propose and validate a context-
aware framework for the use of animatronic biofeedback,
as a way of potentially increasing the compliance of elderly
users with physical rehabilitation exercises performed at home.
in the scope of our work, animatronic biofeedback entails
the use of pre-programmed actions on a robot that are trig-
gered in response to certain changes detected in the users’
biomechanical or electrophysiological signals. We use elec-
tromyographic and accelerometer signals, collected in real
time, to monitor the performance of the user while execut-
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ing the exercises, and a mobile robot to provide animatronic
reinforcement cues associated with their correct or incorrect
execution. A context-aware application running on a smart-
phone aggregates the sensor data and controls the anima-
tronic feedback. The acceptability of the animatronic biofeed-
back has been tested on a set of volunteer elderly users. The
results suggest that the participants found the animatronic
feedback engaging and of added value.

Keywords Context-Awareness, Mobile Computing,
Physiological Signals, Human-Computer Interaction.

1 Introduction

Every year a vast number of people undergo physical reha-
bilitation due to work related injuries [1], disability [2], and
other conditions. Within the portfolio of tools that therapists
currently have at their disposal, biofeedback has become
particularly popular [3,4], with clinical evidence showing
that it is an engaging technique with multiple benefits for
the patient [3–6]. As a way of improving the effectiveness
of treatments, one of the latest trends has been the extension
of the rehabilitation process to people’s homes with biofeed-
back exercises designated by the therapist to be performed
autonomously by the patient at home, in-between sessions
at the clinic [7–9].

A major advantage of biofeedback is the possibility of
deriving objective performance indicators from direct phys-
iological measurements in real time, and using them for live
progress monitoring and guidance of the rehabilitation exer-
cises to maximize the potential outcomes. A critical aspect
in any biofeedback system are positive and negative rein-
forcement cues, provided to the patient in real time when a
given exercise is being executed. These are used as a way
of confirming whether the goals set by the therapist are be-
ing met or not. Reinforcement cues used in biofeedback are
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generally visual, acoustic, and/or haptic signals delivered
through a computer or mobile device, acting as the interface
with the patient. However, aspects such as screen size, in-
terfaces, lack of technological proficiency, reduced sight or
hearing abilities, and other factors associated with the more
traditional feedback methods can pose difficulties to specific
user groups (such as elderly patients), ultimately leading to
poor compliance in home exercises.

In this paper we propose a new approach based on a
context-aware application, which translates context infor-
mation (gathered from physiological sensor data acquired
in real time) into animatronic feedback with underlying se-
mantics (see Fig. 1). Given that it is mostly based on phys-
ical rather than digital interfaces, our approach makes way
for a more natural interaction and relaxes several constraints
found in other approaches. We believe that this context-aware
animatronic biofeedback perspective can greatly contribute
to further enhance the set of tools available for therapists,
especially as far as methods for increasing compliance with
home exercises in elderly patients are concerned.

2 Related Work

As recently argued by Chandra, Oakley and Silva [10], phys-
ical rehabilitation at home using biofeedback has multiple
potential drawbacks, user engagement being the most im-
portant. Positive and/or negative reinforcement cues provided
to the user during the exercises play a major role in user
engagement. In this section we present a summary of ap-
proaches found in the state-of-the-art supporting physical
rehabilitation at home using biofeedback.

2.1 Audiovisual Biofeedback

Audiovisual feedback is the most widespread approach ever
since biofeedback started to being used, focuses on the use
of either visual or acoustic cues (or a mixture of both) for
positive and/or negative reinforcement. Liu and Quian [11]
proposed a system for stroke rehabilitation that uses cameras
to monitor the user’s motion and delivers visual feedback,
by means of a projector, to cue the user. This system is fairly
complex and costly for users to setup and use autonomously.

Also based on motion tracking, the work by Lange et
al. [12] proposes a gamification approach to physical reha-
bilitation, in which a low cost depth sensing camera is used
together with a game of balance training for adults suffer-
ing from neurological injury. Given that cameras can im-
pose constraints regarding the patient’s relative position to
the camera, Daponte, de Vito, and Sementa [13] proposed
a system based on wearable Inertial Measurements Units
(IMUs) for range of limb motion measurement in home re-
habilitation.

The main drawback of motion data -regardless whether
it is collected by camera or IMU- is that it only provides an
indirect measurement of the underlying physiological pro-
cesses associated with a given exercise, while other signals
such as Electromyography (EMG) provide much finer and
more direct measurements. Aung and Al-Jumaily [14] present
a shoulder rehabilitation system that aims to increase the
motivation and autonomous effort of users while doing phys-
ical rehabilitation exercises. Their system uses a number of
real time line graphics and other visual cues triggered in re-
sponse to the muscle activity as measured by EMG sensors.
The user can choose from a set of four game-like interaction
activities that provide feedback cues on a computer screen.

As a way of simplifying the overall setup and complexity
of the procedures involved in EMG biofeedback, Farjadian,
Sivak and Mavroidis, [15] proposed a t-shirt that acquires
multiple EMG channels and heart rate data. A smartphone
interface provides audiovisual feedback, enabling the user
to observe and adjust the exercises in real time. The work
by Daponte et al. [16] also evaluates the use of EMG data in
post-stroke rehabilitation, combining it with range of motion
data acquired using a goniometer.

Over the years a number of commercial devices avail-
able for home rehabilitation have also been made available.
Thought Technology[17], MindMedia[18], and PLUX[19]
all provide a range of devices for real time audiovisual feed-
back, which users can follow while doing physical rehabili-
tation exercises.

2.2 Kinesthetic Biofeedback

Although audiovisual feedback is useful, in some cases it is
advantageous for users to have a mechanical or haptic feed-
back either as an alternative or as a complement. For this
reason, abundant research has been devoted to kinesthetic
biofeedback techniques.

A biomechatronic device named RUPERT has been pre-
sented by Sugar et al. [20], as a way to provide an easy-to-
use assistance to enable the patient and therapist to achieve
more systematic therapy at home or at the clinic. This device
has been designed as a wearable robot for upper extremity
physical rehabilitation using biofeedback in stroke patients.
In [21], Lunenburger et al. combine a virtual environment
with a robot-assisted gait training unit, in an attempt to in-
crease the motivation to perform the exercise.

Physical rehabilitation exercises may be required for a
number of body regions and patient conditions. For instance,
Monaco et al. [22] proposed a neuro-rehabilitative platform
for bedridden post-stroke patients. This platform enables ac-
tive and passive control of the motion in a range of motor
tasks. In [23], the authors have used real time sensing and
haptic feedback to train tibia and trunk angle changes dur-
ing gait.
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Fig. 1: Main elements of the proposed animatronic biofeedback system

Electromyography (EMG) has also been used together
with kinesthetic feedback; Casellato et al. [24], explored the
use of visual-haptic biofeedback during upper limb move-
ments, as a way of testing if augmented sensory feedbacks
can induce motor control improvement in patients with pri-
mary dystonia.

Another dimension of kinesthetic biofeedback is the de-
livery of feedback stimuli using electrical stimulation rather
than biomechatronic or haptic feedback. An example of such
a system is shown in the work by Banerji et al. [25], which
used functional electrical stimulation as a tool to augment
rehabilitation in post-stroke patients.

3 Proposed Approach

In this work we propose a low-cost, easy to deploy alter-
native to the above mentioned biofeedback categories. It is
based on animatronic biofeedback mediated by a context-
aware application, which uses multimodal physiological da-
ta as input.

3.1 Animatronic Feedback

Visual and auditory biofeedback has been amply studied in
the literature. In this work we choose an animatronic feed-
back approach in order to provide positive and negative re-
inforcement cues. We want to test whether the actions of the
robot biofeedback response would be of added value to the
user, given that it is a physical rather than a audiovisual in-
terface. This approach has the advantage of only depending
on a physical interface, programmed to perform a pre-set se-
ries of actions related to the accomplishment, or not, of the
goals set by the therapist.

Unlike software user interfaces displayed on a computer
or mobile phone screen, which are not necessarily acces-
sible in terms of interaction, animatronic feedback offers a
more natural interaction with the reinforcement cues. Thus

potentially being easier to understand and more engaging for
the user. The robot represents the “persona” of a robotic pet
moving in front of the user and delivering the animatronic
feedback cues. This makes it particularly suitable for user
groups less proficient with digital interfaces, such as the el-
derly.

For our work we used a Bot’n Roll mobile robot [26],
which combines a set of physical actuators, namely servo
wheels to allow the robot movements, and a servo claw used
to grab objects. It can be controlled in real time by means of
a wireless communication module based on Bluetooth tech-
nology (Class II v2.0) with a baud-rate of 38.400 bps. Using
these features we programmed animatronic feedback actions
that can be triggered as positive reinforcement cues when the
user is correctly performing a given exercise, namely:

1. Forward or backward motion;
2. Turning left or right;
3. Closing and opening the claw;

The negative reinforcement cue is common to all exer-
cises, and is expressed by the robot going backwards to the
place it was before the last movement.

If the robot remains still without moving it could mean
various things:

1. After positive feedback: the current exercise has been
performed well.

2. After negative feedback: the last exercise may be tried
again.

3. In the remaining cases: the current movement has not
been correctly performed yet.

3.2 Exercise Assessment

A key element in biofeedback is the ability to measure how a
given exercise is being performed. The most common exer-
cises involve either the musculoskeletal system, biomechan-
ical activities, or a combination of both. Electromyography
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(EMG) provides a direct measurement of the recruitment of
one or several groups of muscles. Accelerometry (ACC), on
the other hand, can be used for biomechanical assessment
(e.g. range of motion, limb tilt, etc.). For this part of our
work we used the BITalino biosignal acquisition platform
[27].

BITalino combines EMG and ACC sensors with a wire-
less communication module that uses Bluetooth technology
(Class II v2.0), providing both biosignals acquisition and
connectivity to a base station (in our case a smartphone).
We used the BITalino Board in a configuration that acquires
EMG and ACC (Z-axis) signals (10 bits @ f s = 100 Hz),
streaming the raw data via Bluetooth with a baudrate of
115.200 bps to the smartphone. Given that BITalino only
outputs raw data, we had to devise a set of algorithms to
convert this data into meaningful events.

3.2.1 Muscle Contraction Detection

For EMG data, we used an onset detection algorithm con-
sisting of two stages, namely a processing block to filter the
signal and compute the envelope of the EMG signal, and a
decision rule block (see Fig. 2). The processing block uses a
sliding window of M = 40 samples, without overlapping be-
tween windows, to perform a moving average filtering of the
signal as described by Equation 1 in which x[n] is the input
signal (EMG), s[n] is the filtered signal, and M is the mov-
ing average window size without overlapping. For a sam-
pling frequency of 100 Hz, the −3 dB cut-off frequency is
approximately 30 Hz and the gain is 2 at 0 Hz. The phase
shift is 20 ms (two samples):

s[n] =
1
M

M−1

∑
j=0

x[n− j]. (1)

Afterwards, signal rectification is performed by subtract-
ing the DC component s[n] and computing the absolute value
of each point within the sliding window, as defined by Equa-
tion 2.

z[n] =

∣∣∣∣∣s[n]− 1
M

M−1

∑
j=0

s[n− j]

∣∣∣∣∣ . (2)

The processing stage finishes by computing the aver-
age value of the sliding window, as described in Equation
3 (where M = 40 as previously described). In the end, we
have one resultant value, y[n], for each M samples of the
raw input signal. Example data for biceps contractions can
be seen in Fig. 3 (a).

y[n] =
1
M

M−1

∑
j=0

z[n− j]. (3)

Fig. 2: Signal Processing for the EMG

Finally, a simple decision rule is applied to y[n] to deter-
mine if there is a muscle contraction when y[n]> threshold.
The threshold value is defined as a percentage of what is
called the Maximum Voluntary Contraction (MVC). In the
calibration stage, the user is asked to voluntarily contract
each monitored muscle in order to determine the maximum
muscle activation amplitude he can produce (the MVC). The
threshold is manually defined as a % of the MVC; the fact
that this is a relative value makes it insensitive to variable
factors between exercising sessions (e.g. skin moisture, dif-
ferent electrodes, different devices, etc.).

3.2.2 Limb Tilt and Motion Detection

The strategy used for ACC data processing follows the same
approach. However, the processing stage consists only of a
low-pass filter implemented with a moving average filter, as
described by Equation 1. Similarly to the EMG approach,
the ACC decision rule is applied to determine the ACC value
in each instant and compared it with a threshold value in-
terval. The thresholds for the ACC were calculated by the
analysis of the values for the processed data and mapping
them with the limb angles. As an example of limb tilt, three
different positions of an accelerometer attached to the wrist
can be seen in Fig. 3 (b).

3.3 Context-Aware Application

We adopted an approach based on context-aware systems
for the development of the mobile application. Following
the definition of context given by Dey et al. [28], an applica-
tion is context-aware if the interaction between the user and
the application is affected by relevant information related to
the entities of that context. Usually these entities are peo-
ple, objects and the environment where the interaction takes
place.

To facilitate the use of the context, our applications use
an extended version of the MobileBIT framework [29]. Mo-
bileBIT is a framework for rapid prototyping of Android ap-
plications intended for real-time data acquisition, process-
ing, recording, communication and visualization for the telemedicine
and mobile health domains. It was adapted to deliver context
information to mobile applications.

In MobileBIT applications, context information is ob-
tained from sensors and processed into meaningful data to
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(a) EMG (b) ACC

Fig. 3: EMG and ACC signals were used to evaluate the adopted algorithm. The top row shows the EMG (left) and ACC
(right) raw signals, and the bottom row shows the signal obtained at the final stage of the adopted algorithm. It is important
to highlight how the output of the algorithm we have adopted facilitates the onset detection on the EMG signals

generate semantically complex information. MobileBIT al-
lows developers to define relevant pieces of context infor-
mation and use them to create context-aware applications.

In this case, the context information is the contraction
of muscles and tilt movements of limbs following the as-
sessment of the Section 3.2. We apply it to the right arm
muscles and movements in our context-aware applications.
One Android device receives the EMG and ACC data from
the BITalino with a sampling rate of 100 Hz. Every 400 ms
(40 samples), the signals are processed to obtain a value that
is compared with each threshold interval. The application is
notified of every new context information acquired by the
MobileBIT framework and sends a command to move the
robot when a biofeedback response is required. The obtained
context information can be seen in Table 1.

From the developers perspective, mechanisms provided
by MobileBIT make it possible to create context-aware mo-
bile applications. From the end-user perspective, these ap-
plications may hide the notion of context and they are per-
ceived as enhanced mobile applications. In the case of this
work, the final application follows a natural interaction ap-
proach using arm gestures and movements as a way of inter-
acting with the robot.

3.3.1 The ToBITas Use Case

On a preliminary stage, we built an application called To-
BITas [30], a proof of concept for a context-aware applica-
tion that controls a mobile robotic platform using physio-
logical sensors. Users can activate different responses in the
robot in real time using two EMG channels and one ACC
channel of the BITalino (see Table 1 for a detailed descrip-
tion of the interaction).

3.3.2 Physical Rehabilitation Use Case

Following this, we depicted a more constrained scenario with
a step by step control mode with routines and tasks compa-
rable to a real set of rehabilitation exercises.

Two types of exercises well performed by the user will
trigger different actions in the robot:

1. Activating the biceps (e.g. folding the arm) for T sec-
onds sends a command to the robot to move forward for
a distance of 40 cm.

2. Tilting the wrist to the left or right for T seconds will
animate the robot to turn in the same direction for 90
degrees.

In this scenario physiotherapists define the chaining of
these two kinds of exercises as routines. Usually the same
exercise would be repeated a number of times in the routine.
If the exercise is interrupted, the robot will activate the neg-
ative biofeedback cue and move back to the initial position.
Consequently, the user must perform the last exercise again.
We consider the following events as interruptions:

1. For muscles: When the contraction value is below the
threshold set up in the calibration phase.

2. For tilt positions: When the value of the accelerometer
is outside the region defined for an exercise.

4 Experimental Evaluation: Rehabilitation Routines
with Elderly People

We performed a usability study and assessed the value of
animatronic feedback to increase user engagement. We con-
sidered this to be a mandatory first step in order to provide
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Table 1: The relationship between the acquired signals, the context information and the system behaviour

Signal User Action Context Information Robot Command

EMG 1 The user folds his arm Action detected: Right arm folded Move Forward
EMG 2 The user closes his hand Action detected: Hand Closed Open/Close the Claw

ACC
Tilts the wrist to the left Position detected: Wrist up Move Right
Tilts the wrist to the right Position detected: Wrist down Move Left
Wrist in central position Position detected: Wrist side Don’t Move

Fig. 4: Experimental setup and task description for the eval-
uation of ToBITas use case

therapists with evidence that could support a more compre-
hensive clinical study in future work. Hence, we only in-
volved participants not enrolled in physical rehabilitation.

This evaluation was carried out to answer the following
research question: Does the animatronic biofeedback have
any advantages when it is used for rehabilitation exercises
for elderly people? In order to answer this question, we com-
pared visual on-screen biofeedback obtained using an An-
droid TV application (Method A) with our approach of an-
imatronic biofeedback (Method B) implemented by the ap-
plication as described in Section 3.3.2.

4.1 Testing the Overall Setup, ToBITas Case Study

Before the evaluation with real users we developed a case
study to validate the equipment that can be found in Game-
cho et al. [30]. The objective was to try a free control mode
with young subjects implemented in the application described
in Section 3.3.1. The original goal was to perform a set of
movements in real time (see Fig. 4 for the original routine
description). Results showed that users were able to under-
stand and quickly learn how to use our approach (see Table
2 and Fig. 5).

Table 2: Summary of the task performance results for each
group of participants measured in seconds for the test ex-
periment. (A: Novice participant, B: Participant with some
experience on similar systems controlled by gestures, C: To-
BITas developers). Tn refers to the attempt

Group T1 [s] T2 [s] T3 [s] µ [s] σ [s]

A (7 users) 140 93 57 96 59
B (4 users) 32 45 48 42 7
C (2 users) 25 38 24 29 6
Average 89 70 49 69 16

Fig. 5: Progression chart from the first evaluation of the
ToBITas Case Study, the learning effect is noticeable for
Novice users

4.2 Method

For the next step in the evaluation we redesigned the ani-
matronic biofeedback from a continuous feedback control
mode to a step by step one. In this second approach, only
one movement can be activated at the same time to perform
one of the exercises described in Section 3.3.2. The mobile
application waits until an exercise has finished to enable the
following one. In our previous experiment (see Section 4.1)
we used the thenar eminence muscle, which proved not to
be a good choice for the type of exercises we envisioned.
Therefore we decided to eliminate it from the study. After-
wards three different exercises were considered for the eval-
uation: biceps contraction, wrist tilt to the left and wrist tilt
to the right. The exercises were designed taking into account
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Fig. 6: Electrodes and sensor placement on the right arm.
From left to right: EMG 1 (biceps), EMG 2 (thenar emi-
nence), board placement on the wrist with incorporated ACC
sensor. Note that the thenar eminence was used only for the
evaluation reported in Section 4.1

the standard rehabilitation protocol and goals for post-stroke
or post-operative recovery cases.

4.2.1 Participants

11 volunteers (4 males) were recruited from an association
of retired people. The participants age ranged from 64 to 78
years (73.2±4,4). Informed consent was obtained from all
individual participants included in the study.

4.2.2 Apparatus

BITalino was used for the EMG and ACC data acquisition
for both biofeedback methods. For the Method A a Riko-
magic MK902II mini-PC with Android 4.4 was used, con-
nected to a 14 inch monitor. While, for Method B, a Nexus
5 smartphone with Android 5.0.1 and the Bot’n Roll mo-
bile robotic platform was used. All the Android applications
were developed using the MobileBIT framework. The ex-
periment was monitored by a member of the research team.

4.2.3 Procedure

First, demographic data was gathered by means of a short
questionnaire. After that, the participants were helped to ad-
just the BITalino onto the right arm. Subsequently a calibra-
tion phase was carried out to find out the MVCs and define
the activation threshold. The EMG electrodes were placed
over the muscle fibres of the biceps, with a distance of ap-
proximately 2 cm. The reference electrode was placed on a
bone area on the elbow. The ACC sensor is on the BITalino
board, which was placed on the right wrist of the user, as
shown in Fig. 6. The sensor placement followed the recom-
mendations established by the SENIAM task force [32].

In our experimental evaluation we considered an activa-
tion threshold of around 20% of the MVC, this threshold
should be changed to a lower one if the participants shows
fatigue while performing the experiment. Then, the users
were required to perform a specific task. The task consists
in the exercise routine chaining the exercises explained in

Table 3: The routine is composed of 3 different exercises in
a sequence of 14 exercises

Type Exercise description Sequence order

1 Biceps contraction 1, 3, 5, 7, 8, 10, 12, 14
2 Turn wrist to the left 2, 4, 6
3 Turn wrist to the right 9, 11, 13

Section 3.3.2. These exercises are chained and repeated in
a routine of 14 movements, organized as shown in Table 3.
Each of the exercises in the routine had to be maintained for
T = 12 seconds to be considered successful. Once an exer-
cise is finished, the next one is performed until completing
the whole routine.

The whole task is repeated twice for each method:

– In Method A, the participant had to follow the indica-
tions of the Android TV application to perform the task
and complete the exercises. The screen showed a counter
from 30 to 0. Visual biofeedback was implemented in
the following way: while the exercise was being per-
formed well the counter counts down. If there was an
error the counter resets to 30. Whenever the countdown
reached 0 the exercise was considered to be successfully
performed and the next exercise was prompted on the
screen.

– In Method B, the participants were provided with a sheet
on which the routine was described and they had to per-
form the exercises watching the robot. When required,
the researcher indicated the next movement to the partic-
ipants. This method implements the animatronic biofeed-
back approach as described in Section 3.3.2.

During the experiment, the time required to complete
the routine and the number of errors made were recorded.
Once the participants had finished the evaluation, they were
interviewed using two questionnaires: the System Usabil-
ity Scale (SUS) [31] and the preferences questionnaire de-
scribed in Table 4. The questionnaire was filled in by a re-
search assistant to avoid misunderstandings of questions and
Likert scales. After finishing the experiment, every partici-
pant was rewarded with a ticket for a meal in the Association
restaurant.

4.2.4 Design

The experiment followed a within-subject design. Biofeed-
back method condition was counterbalanced using a Latin
square. For the same routine two biofeedback methods were
tested, visual biofeedback and animatronic biofeedback, and
two attempts are performed to mitigate the learning effect.
The routine was composed of three different types of ex-
ercises: 8 biceps contraction, 3 right wrist movements and
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Table 4: The second questionnaire is an 8 items Likert scale with 7 response options (1 totally disagree and 7 totally agree)

Factor Statement

1 User Satisfaction: Lack of difficulty I’m satisfied with the ease with which I completed the task.
2 User Satisfaction: Perceived time to complete the task I’m satisfied with the time I spent to complete the task.
3 User Satisfaction: Comfort I’ve felt comfortable using the system.
4 User Satisfaction: Amusement I’ve enjoyed using this system.
5 User Awareness: Biceps movements I was aware that the biceps contraction exercise was well performed.
6 User Awareness: Wrist movements I was aware that the wrist tilt exercise was well performed.
7 Where the system is to be applied: Rehabilitation center I would like to use this system in a rehabilitation center.
8 Where the system is to be applied: Home I would like to use this system at home.

3 left wrist movements. Aside from calibration, the num-
ber of expected entries were 11 participants × 2 Methods
× 2 attempts × 14 exercises/attempt = 616 exercises (352
biceps, 132 left, 132 right). For each routine, a minimum
time of 14 exercises/routine × 12 seconds/exercise = 168
seconds/routine are expected.

4.3 Results and Discussion

One of the volunteers did not finish the experiment because
she could not maintain the required biceps contraction for
T = 12 seconds. Since that participant did not complete the
routine, the corresponding questionnaires were not filled in.
The rest of the participants (10) successfully completed the
experiment.

Concerning the perceived usability of the system, the ob-
tained SUS scores were 88.5% ± 7.2. Therefore, we con-
clude that participants considered our system to be usable.
Regarding the required time to finish all the exercises and
the error rate, we found that the results were similar for both
methods (see Table 5 and Table 6).

With reference to the learning effect, in the second at-
tempt, the time decreased by 11 seconds (4%) for Method A
and 25 seconds (8%) for Method B. Conversely, the number
of errors decreased by 5% for Method A but increased by
12% for Method B (see Fig. 7). The reduction in time by 25
seconds along with the slight increase by 2 in the number
of errors, could suggest that the participants learnt how to
deal quickly with the errors after the animatronic biofeed-
back during the second attempt.

To further compare both methods, we considered the
second attempt as a repetition. Therefore, we increased the
sample to N = 20 values for each method. Afterwards, us-
ing the Shapiro-Wilk Normality Test we found that the data
did not follow a normal distribution for Method A. Con-
sequently we apply a Wilcoxon Signed-Rank test to anal-
yse differences for the completion times and the number of
errors between Method A and B. Regarding the time re-
quired to complete the routine, the medians of Method A
and Method B were 249.93 and 291.56 respectively. The
Wilcoxon Signed-rank test suggests that there is no signifi-

Table 5: Mean routine completion times in seconds

Participant Attempt 1 Attempt 2
A (Visual) B (Robot) A (Visual) B (Robot)

1 209.3 242 226.9 214.8
2 230.1 3144 220.1 351.2
3 235.7 258.8 230.1 228.4
4 343.4 289.2 274.2 328.9
5 319.7 300 338.5 250.4
6 259.7 360 247.4 310.8
7 373.8 241.6 279.3 294
8 280.4 408 345.7 300.4
9 252.5 239.2 212.5 232.8
10 214.9 339.3 241.7 232.4

µ 272 299.2 261.6 274.4
σ 56.4 57.06 47.6 48.3

Table 6: Number of errors registered in the experiment

Participant Attempt 1 Attempt 2
A (Visual) B (Robot) A (Visual) B (Robot)

1 1 0 5 3
2 7 12 2 28
3 4 8 6 3
4 26 7 14 23
5 24 12 24 9
6 9 17 7 15
7 25 2 8 11
8 8 31 28 20
9 3 5 1 4
10 1 8 8 4

µ 10.8 10.2 10.3 12
σ 10.2 8.8 9.1 9.1

cant effect for method (W = 72, Z =−1232, p> 0.05). With
respect to the number of errors, the medians of Method A
and Method B were 7.5 and 8.5 respectively. The Wilcoxon
Signed-rank test shows that there is no significant effect for
method (W = 94.5, Z = −0.392, p > 0.05). These results,
while not conclusive, do however, suggest that for this ex-
periment the participants performance was identical in terms
of completion time and errors, for both animatronic and vi-
sual feedback.
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(a) Time to complete the routine (b) Number of errors

Fig. 7: Progression charts for the two methods regarding the time and number of errors

Finally, the results of the interview and questionnaires
show that both systems are perceived similarly (see Fig. 8).
Nevertheless there is a noticeable difference for the Amuse-
ment item of the animatronic biofeedback. For this case, the
medians of Method A and Method B were 5.5 and 7 respec-
tively. A Wilcoxon Signed-rank test was applied to a sample
of N = 7 data (the test ruled out 3 participants for scoring
both methods with the same value). Under these conditions,
the Wilcoxon Signed-rank test shows that the method does
have a significant effect (W = 2 and the critical value of W
for N = 7 at p ≤ 0.05 is 2). This result is reinforced by some
comments made by participants during the interview: ”The
robot is a toy”, ”It’s funny”. In addition, one participant also
said that he felt more comfortable with the screen but that
it was boring compared to the robot. As the main drawback,
most of the participants believed that the visual feedback
was more appropriate for home due to the space required
for the movements of the robot. To overcome space restric-
tions another type of robots like robotic arms or humanoid
robots should be tested.

5 Conclusions

In this paper we proposed and evaluated a context-aware
framework, aimed at using animatronic biofeedback as a
way of potentially increasing the compliance of elderly users
to physical rehabilitation exercises performed at home. The
results showed that animatronic biofeedback produced sim-
ilar performance to visual biofeedback in completion time
and error rate. The main benefit of this approach was the in-
crease in the participants’ satisfaction while doing the rou-
tines. This fact combined with some comments from the par-
ticipants described in the previous section suggested that an-
imatronic biofeedback can have a positive effect on the at-
tention and engagement of the users. Further studies should
be required to validate this finding.
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Alves, André Lourenço and Ana Fred for their collaboration in the
foundational work for this research [30].

References

1. European Agency for Safety and Health at Work, Musculoskeletal
disorders: Key facts. https://osha.europa.eu/en/topics/
msds/index_html/facts_html [accessed 14 July 2015].

2. UN World Health Organization (WHO), World Report on Dis-
ability. 2011, WHO/NMH/VIP/11.01, available at: http://www.
who.int/disabilities/world_report/2011/report.pdf

[accessed 14 July 2015].
3. Giggins O.M., Persson U.M., Caulfield B., Biofeedback in reha-

bilitation. J Neuroeng Rehabil, 10(60), 2013.
4. Schwartz M. S., and Andrasik F., Biofeedback: A Practitioner’s

Guide. The Guilford Press, 2005.
5. Koh C.E., Young C.J., Young J.M., Solomon M.J., System-

atic review of randomized controlled trials of the effectiveness of
biofeedback for pelvic floor dysfunction. Br J Surg., 95(9):1079-
1087, 2008.

6. Bo K., Berghmans B., Morkved S., Kampen M., Evidence-Based
Physical Therapy for the Pelvic Floor: Bridging Science and Clin-
ical Practice. Elsevier, 2007.

7. Coulter C.L., Scarvell J.M., Neeman T.M., Smith P.N.,
Physiotherapist-directed rehabilitation exercises in the outpatient
or home setting improve strength, gait speed and cadence after
elective total hip replacement: a systematic review. J Physiother,
59(4):219-226, 2013.

8. Rao S.S.C., Biofeedback therapy for constipation in adults. Best
Pract Res Clin Gastroenterol, 25(1):159–166, 2011.

9. Petrofsky J.S., The use of electromyogram biofeedback to reduce
Trendelenburg gait. Eur J Appl Physiol, 85(5):491-495, 2001.

10. Chandra, H., Oakley, I. and Silva, H., User needs in the perfor-
mance of prescribed home exercise therapy. In Proc. of CHI ’12,
pages 2369–2374, 2012.



10 Borja Gamecho et al.

Fig. 8: Mean values obtained for the results of the second questionnaire (see Table 4)

11. Liu, Y. and Quian, G., Projector-Camera Guided Fast Environ-
ment Restoration of a Biofeedback System for Rehabilitation. In
Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–2, 2007.

12. Lange, B., Chang, C.Y., Suma, E., Newman, B., Rizzo, A.S., Bo-
las, M., Development and evaluation of low cost game-based bal-
ance rehabilitation tool using the Microsoft Kinect sensor. In Proc.
of the IEEE Eng Med Biol Soc Conf, pages 1831-1834, 2007.

13. Daponte, P., de Vito, L., Sementa, C., Validation of a home re-
habilitation system for Range of Motion measurements of limb
functions. In Proc. of IEEE Int. Symp. on Medical Measurement
and Applications (MeMeA), pages 288-293, 2013.

14. Aung, Y.M., and Al-Jumaily, A., Shoulder rehabilitation with
biofeedback simulation. In Proc. of the International Conference
on Mechatronics and Automation, pages 974-979, 2012.

15. Farjadian, A.B., Sivak, M.L., Mavroidis, C., SQUID: Sensorized
shirt with smartphone interface for exercise monitoring and home
rehabilitation. In Proc. of the IEEE Int’l Conf. on Rehabilitation
Robotics (ICORR), pages 1-6, 2013.

16. Daponte, P., de Vito, L., Pavic, B., and Silva, H., Case study on
muscle activation analysis in post-stroke rehabilitation patients. In
Proc. of IEEE Int. Symp. on Medical Measurement and Applica-
tions (MeMeA), pages 360-365, 2011.

17. Thought Technology Ltd, Comercial device list. http://

thoughttechnology.com/index.php/hardware.html [ac-
cessed 14 July 2015]

18. MindMedia Neuro and Biofeedback Systems, http://www.

mindmedia.info/CMS2014/ [accessed 14 July 2015].
19. PLUX, Physioplux. http://www.physioplux.com/ [accessed

14 July 2015].
20. Sugar, T.G., He, J., Koeneman, E.J., Koeneman, J.B., Herman, R.,

Huang, H., Schultz, R.S., Herring, D.E., Wanberg, J., Balasubra-
manian, S., Swenson, P., and Ward, J.A., Design and control of
RUPERT: a device for robotic upper extremity repetitive therapy.
IEEE Trans Neural Syst Rehabil Eng, 15(3):336-46, 2007.

21. Lunenburger, L., Wellner, M., Banz, R., Colombo, G., Combining
Immersive Virtual Environments with Robot-Aided Gait Training.
In Proc. of the IEEE Conference on Rehabilitation Robotics, pages
421–424, 2007.

22. Monaco, V., Galardi, G., Coscia, M., and Martelli, D., Design
and Evaluation of NEUROBike: A Neurorehabilitative Platform
for Bedridden Post-Stroke Patients. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 20(6):845-852, 2012.

23. Shull, P.B., Silder, A., Shultz, R., Dragoo, J.L., Besier, T.F., Delp,
S.L., Cutkosky, M.R., Six-week gait retraining program reduces
knee adduction moment, reduces pain, and improves function for
individuals with medial compartment knee osteoarthritis. J Orthop
Res., 31(7):1020-1025, 2013.

24. Casellato, C., Pedrocchi, A., Zorzi, G., Vernisse, L., Ferrigno, G.,
Nardocci, N., EMG-based visual-haptic biofeedback: a tool to
improve motor control in children with primary dystonia. IEEE
Trans Neural Syst Rehabil Eng., 21(3):474-480, 2013.

25. Banerji, S., Heng J., Ponvignesh, P.S., Menezes, D.D., Augment-
ing Rehabilitation after Stroke: A Flexible Platform for Combin-
ing Multi-channel Biofeedback with FES. Converging Clinical
and Engineering Research on Neurorehabilitation Biosystems and
Biorobotics, 259-263, 2013.

26. Ribeiro A.F., Lopes G., Pereira N., Cruz J., Costa M.F.M., Bot’n
roll robotic kit as a learning tool for youngsters. In Proc. of the
9th International Conference on Hands on Science (HSCI’2012),
192, 2012.

27. Silva H., Lourenço A., Fred A., Martins R., BIT: Biosignal ig-
niter toolkit. Computer Methods and Programs in Biomedicine,
115(1):20–32, 2014.

28. Dey A., Abowd G D., Salber D., A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware ap-
plications. Hum.-Comput. Interact., 16(2):97–166, 2001.
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