Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A context-aware application to increase elderly users compliance with physical rehabilitation exercises at home via animatronic biofeedback

Gamecho, Borja and Silva, Hugo and Guerreiro, José and Gardeazabal, Luis and Abascal, Julio (2015) A context-aware application to increase elderly users compliance with physical rehabilitation exercises at home via animatronic biofeedback. Journal of Medical Systems, 39 (11). ISSN 0148-5598

[img]
Preview
Text (Gamecho-etal-JMS-2015-A-context-aware-application-to-increase-elderly-users-compliance-with-physical)
Gamecho_etal_JMS_2015_A_context_aware_application_to_increase_elderly_users_compliance_with_physical.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Biofeedback from physical rehabilitation exercises has proved to lead to faster recovery, better outcomes, and increased patient motivation. In addition, it allows the physical rehabilitation processes carried out at the clinic to be complemented with exercises performed at home. However, currently existing approaches rely mostly on audio and visual reinforcement cues, usually presented to the user on a computer screen or a mobile phone interface. Some users, such as elderly people, can experience difficulties to use and understand these interfaces, leading to non-compliance with the rehabilitation exercises. To overcome this barrier, latest biosignal technologies can be used to enhance the efficacy of the biofeedback, decreasing the complexity of the user interface. In this paper we propose and validate a context-aware framework for the use of animatronic biofeedback, as a way of potentially increasing the compliance of elderly users with physical rehabilitation exercises performed at home. In the scope of our work, animatronic biofeedback entails the use of pre-programmed actions on a robot that are triggered in response to certain changes detected in the users biomechanical or electrophysiological signals. We use electromyographic and accelerometer signals, collected in real time, to monitor the performance of the user while executing the exercises, and a mobile robot to provide animatronic reinforcement cues associated with their correct or incorrect execution. A context-aware application running on a smartphone aggregates the sensor data and controls the animatronic feedback. The acceptability of the animatronic biofeedback has been tested on a set of volunteer elderly users, and results suggest that the participants found the animatronic feedback engaging and of added value.