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Abstract 

This paper investigates the existence and dynamical properties of artificial equilibria 

for solar sails in the elliptical restricted three-body problem.  It is shown that planar 

two-dimensional equilibrium curves exist, embedded in three-dimensional space, in a 

non-uniformly rotating, pulsating coordinate system.  Because of the stretching of the 

coordinate frame in the system plane, while the out-of-plane coordinate remains 

unstretched, three-dimensional equilibrium surfaces, which exist in the circular case, 

do not exist in the elliptical restricted three-body problem.  Control in the 

neighborhood of an equilibrium point is investigated through a pole assignment 

scheme.  This allows the possibility of practical out-of-plane equilibria in elliptical 

three-body systems with small eccentricity.  

 

Introduction 

The dynamics and control of solar sails in the circular restricted three-body problem 

have been investigated in some detail.1-3  The solar sail circular restricted three-body 

problem (luminous primary mass and a flat mirror) possesses infinite equilibrium 

surfaces parameterized by the solar sail lightness number, while the classical elliptical 

restricted three-body problem possesses only five Lagrange points.4  The so-called 
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photo-gravitational circular restricted problem (luminous primary mass and a 

spherical test particle) has seven Lagrange points.5  The stability of these seven 

Lagrange points have been investigated by several authors for either the circular or 

elliptical restricted cases.6-11  In those papers instead of a solar sail, the term ‘photo-

gravitational’ is adopted and is equivalent to the solar sail problem with the sail 

normal fixed along the Sun-line (spherical test particle).  It can be shown that the 

collinear equilibrium points of the photo-gravitational elliptical restricted three-body 

problem are unstable, while the triangular points are Lyapunov stable in some 

parameter ranges. 

 Using the solar sail circular restricted three-body problem, various 

applications of the artificial equilibria have been discussed.  Forward12 proposed using 

artificial equilibria high above the night-side of the Earth (equilibrium surfaces 

attached to the L2 point) to provide telecommunications services to high latitude users, 

while McInnes13, 14 has proposed using artificial equilibria high above the day-side of 

the Earth (equilibrium surfaces attached to the L1 point) to provide continuous, real-

time imaging of the poles.  Morrow also proposed using three-body equilibrium 

surfaces to park solar sails in close proximity to asteroids, or other small solar system 

bodies.15  In-plane equilibria have also been considered as a useful location to station 

space weather missions, sunward to the classical L1 point.16

            In this paper the solar sail elliptical restricted three-body problem will be 

investigated in some detail.  Firstly, a dimensionless equation of motion will be 

derived using a non-uniformly rotating, pulsating coordinate system and the existence 

of planar equilibrium curves investigated.  It will then be shown that the three-

dimensional equilibrium surfaces, which exist in the circular restricted three-body 

problem, do not exist for the elliptical restricted three-body problem.  This is due to 
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the stretching of the coordinate frame in the system plane, while the out-of-plane 

coordinate remains unstretched.  Instead it is shown that planar two-dimensional 

equilibrium curves exist, embedded in three-dimensional space, in the non-uniformly 

rotating, pulsating coordinate system.  The local stability of these equilibria will be 

studied numerically and it will be demonstrated that, in general, the equilibria are 

unstable.  Finally, a control scheme for the stabilization of out-of-plane equilibria will 

be derived for the small eccentricity case.  This analysis demonstrates the possibility 

of practical out-of-plane equilibria in small eccentricity systems, even although exact 

out-of-plane equilibria do not exist for the general elliptical restricted three-body 

problem.  This is a key finding since out-of-plane equilibria in the Earth-Sun three-

body system have been proposed for near-term applications of solar sailing.12-14

  

Equations of Motion 

Firstly, we consider a planar elliptical restricted three-body system.  It is assumed that 

an appropriate set of units is introduced so that the gravitational constant , the 

semi-major axis of the problem 

1=G

1=a , and the system has unit total mass.  Let µ  be 

dimensionless mass of the smaller primary (Earth) and then µ−1  will be the mass of 

the larger primary (Sun), which is luminous.  As shown in Fig. 1, let  denote a 

fixed inertial coordinate frame, and using complex number notation define 

YX ,

 

iYXW +=                                                                                                       (1) 

 

Then, in a similar manner let ηξ ,  denote a non-uniformly rotating coordinate frame 

where 
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ηξς i+=                                                                                                          (2) 

 

Again, using complex number notation, the two reference frames can be connected 

through a rotation 

 

ifeW ς=                                                                                                            (3) 

 

where  is true anomaly of the smaller primary in the elliptical three-body system, as 

shown in Fig. 1. 

f

        Using this notation, the equation of motion of a solar sail in the inertial 

coordinate system can be written by summing the gravitational acceleration of the two 

primary masses and the solar radiation pressure acceleration experienced by the solar 

sail to obtain 
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where α  is the angle between sail normal and the Sun-line, N  is sail unit normal 

vector,  are coordinates of the Sun and Earth respectively while 1,W W2
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are the distances from the two primary masses to the solar sail.  Again using complex 

notation, the sail unit normal vector can be written as 

 

             YX iNNN +=

 

while the sail lightness number β is defined as the ratio of the solar radiation pressure 

acceleration to the solar gravitational acceleration.1  From Eq. (3) the second time 

derivative of W can be obtained as 

 

[ ] ifefiffiW ςςςς &&&&&&&&& +−+= 22                                                                             (5) 

 

Then, substituting Eq. (5) into Eq. (4), the equation of motion of the solar sail in the 

rotating coordinate frame can be written as 

 

2
21 2

3 3 2
1 2 1

cos2 (1 ) (1 )if n f if
r r r

ς ς ς ς ας ς µ µ β µ ς− −
+ = − − − + − + −& &&& &

% % %
ς&&                 (6) 

 

where, , with n now defined in the rotating frame.  The transformation 

between time and the true anomaly as independent variable can be written as 

ifneN =

 

df
d

dt
df

dt
d
=                                                                                                        (7) 

 

In addition, a non-dimensional (complex) position coordinate can be defined as  
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r
w ~

ς
=                                                                                                                (8) 

 

where r~  is the distance between the two primaries, which can be obtained from the 

two-body problem and 

 

iyxw +=                                                                                                          (9) 

 

where x and y are the non-dimensional position variables of the solar sail in the 

rotating frame of reference.  Since the distance between the two primaries is time 

varying, the rotating coordinate frame is now pulsating (stretched in a periodic 

manner).  Using the pulsating coordinate system it can then be shown that 

 

rwwr &&& ~~ +=ς                                                                                                  (10a) 

rwwrwr &&&&&&&& ~~2~ ++=ς                                                                                       (10b) 

 

and so by substituting Eqs. (7-10) into Eq. (6) it is found that 
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where rrr ~/~
11 = , rrr ~/~

22 =  and the prime indicates derivatives with respect to true 

anomaly .  Considering the two-body orbit of the primaries to determine the time 

derivative terms yields

f

4
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2
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1 c2 (1 ) (1 )
1 cos
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which can be re-written in real number form as 
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where the effective potential of the problem can be written as 
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As a more compact form Eqs. (13) can be written in vector form as 

 

[1
(1 cos )

S
e f
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+
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                                                                      (14) 

 

where  for unit vectors i and j along the x and y axes in the rotating 

coordinate system, , and 

jis yx +=

0 2
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where the sail unit normal vector is now written as x yn n= +n i j .  The equation of 

motion in the non-uniformly rotating, pulsating coordinate system will now be used to 

investigate the existence of equilibria in the solar sail elliptical restricted three-body 

problem. 

 

Equilibrium Solutions 

In order to determine if equilibria exist in the solar sail elliptical restricted three-body 

problem, the equilibrium conditions 0=′=′=′′=′′ yxyx  are substituted into Eq. (14).  

Then, equilibrium solutions must satisfy the identity 

 

0∇Ω+ =a                                                                                                      (16) 

 

Taking the vector product, and scalar product of n  on Eq. (16) it follows that 

 

0 ∇Ω
∇Ω× = ⇒ =

∇Ω
n n                                                                                  (17a) 

( ) 4
1

2
1

1
(1 ) ( )

r
β

µ
∇Ω⋅

=
− ⋅

n
r n

                                                                                 (17b) 

 

Equation (17a) implies that at an equilibrium point the sail normal is always directed 

opposite to the sum of the gravitational force from the primary masses and the 

centripetal force acting on the solar sail, while Eq. (17b) can be used to determined 

the required sail lightness number for equilibrium.  In addition, because the condition 

for equilibrium for the elliptical case (in the rotating, pulsating coordinate frame) has 
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a similar form to the circular case, 1, 2 it is easy to see that planar equilibrium curves in 

the non-uniformly rotating, pulsating coordinate frame are similar to the equilibrium 

curves in system plane of the circular case discussed in Ref. 1 and 2.  Far from the 

Earth the planar equilibrium curves are near circular.  However, there is a more 

complex topology near the Earth, with allowed and forbidden areas, as shown in Fig. 

2.  Because the coordinate systems are different in the elliptical and circular cases, 

there is a significant difference between the two families of equilibrium curves.  

While the planar equilibrium solution curves of the circular case are invariant in a 

uniformly rotating coordinate frame, the curves of the elliptical case are deforming as 

the primaries orbit each other, just as the distance between the classical Lagrange 

points and primaries varies in the elliptical restricted three-body problem.4   

             Figs. 3 show the equilibrium curves in a non-pulsing coordinate frame for 

Earth, where , and (a) is far Earth case and (b) is near Earth case.  Figs. 4 show 

the equilibrium curves near Mercury, where (a) 

0f =

0f = , (b) 
2

f π
= , and (c) f π= .  

Due to the large eccentricity of Mercury, the curves change significantly both in 

position and size (note that here the dimensionless distance is based on the semi-

major axis of Earth’s orbit).  System parameters are taken as 63.04036 10µ −= × , 

 for Earth, and 0167.0=e 71.672 10µ −= × , 0.206=e  for Mercury.  The figures 

indicate that the position and size of the equilibrium curves are varying in a non-

pulsing coordinate frame, although they are not varying in the pulsing coordinate 

frame.   

            Finally, the three-dimensional case will be considered.  Using the above 

analysis, it can be shown that the dimensionless equation of the motion can be written 

as 
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Because of the term  in Eq. (18c) when the equilibrium condition is 

imposed, in the three-dimensional case there are no three-dimensional equilibrium 

surfaces in the non-uniformly rotating, pulsating coordinate frame.  Therefore, for the 

solar sail elliptical restricted three-body problem, equilibrium solutions only exist in 

the plane of the system as two-dimensional planar curves embedded in three-

dimensional space.  This is due to the stretching of the coordinate frame in the system 

plane, while the out-of-plane coordinate remains unstretched.   

zfe )cos1( +

Given that out-of-plane equilibria in the Sun-Earth restricted three-body 

problem have been proposed as a near-term application of solar sailing12-14 this result 

appears to be problematic.  However, as will be seen later, active control can be used 
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to establish practical equilibria for the small eccentricity case.  Since the eccentricity 

of the Earth’s orbit , this ensures that applications of out-of-plane 

equilibria are still in principle possible. 

0167.0=e

 

Stability of Equilibria 

In order to determine the local stability of the equilibrium points in the linear sense, 

we apply an infinitesimal perturbation δ  to an equilibrium point, and so the variation 

of Eq. (14) can be obtained as 

 

( )1 0
(1 cos )

S
e f

∂ ∇Ω⎛ ⎞∂′′ ′′+ − + =⎜ ⎟+ ∂ ∂⎝ ⎠

aδ δ δ
r r
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and matrix =K
( )∂ ∇Ω⎛ ⎞∂

+⎜ ∂ ∂⎝ ⎠

a
r r ⎟

 has to be evaluated at the equilibrium point.  Note 

that in Eq. (20) it is assumed that the direction of the sail normal vector is fixed as the 

infinitesimal perturbation is applied to the position variable.  In addition, since the 

matrix K is time-dependent, the problem at hand becomes the stability of a linear 

system with time-dependent coefficients.  To study the stability, Eq. (19) can be 

represented in the form of first order differential equations as 

 

A′ =χ χ                                                                                                            (21) 
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where, [ ], T′=χ δ δ  and the system matrix A is defined as 

 

⎥
⎦

⎤
⎢
⎣

⎡
−+

=
SfeK

I
A

)cos1/(
0

  

 

where I  is a unit matrix.  Since the system has time-dependent coefficients, its 

stability cannot be directly determined by the eigenvalues of the matrix A .  However 

because ( ) ( 2 )A f A f π= + , according to Floquet theory, the stability of a periodic 

coefficient linear system can be determined by the system behavior over one period.  

The basic idea is first to define a matrix  by ( )Q f

 

( ) ( ) ( )Q f A f Q f′ =                                                                                          (22) 

 

where  is an appropriate dimensional unit matrix.  Then, Eq. (22) is 

integrated to obtain 

IQ =)0(

)2( πQ .  If the eigenvalues iλ of matrix )2( πQ  satisfy 1≤iλ , 

then the system is stable, otherwise it is unstable.  Unfortunately, because the matrix 

( )A f  cannot commute with its integral matrix 
0

( )
f

A dτ τ∫ , we cannot integrate Eq. 

(22) to get the closed form solution of )2( πQ , but numerical integration is always 

available.  

            As a trial, we have investigated the stability of equilibria in some areas, 

defined by the shaded area of Fig. 2, using numerical integration, but only with the 

parameters  and 63.04036 10µ −= × 0167.0=e  for the Earth-Sun elliptical restricted 

three-body problem.  Numerical results show that those equilibria in the shaded area 
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are all unstable, as expected.  Indeed, we expect all equilibria for the solar sail 

elliptical restricted three-body problem to be unstable, other than the classical 

triangular points for some parameter ranges.7  

 

Control of Out-of-Plane Equilibria 

In order to enable unstable equilibria to be used for practical applications, active 

control is clearly required.  In addition, in order to allow out-of-plane equilibria to be 

used in the small eccentricity case, active control will again be required.  Here we 

consider orbit control manipulated with active control of the sail attitude.   

            Usually, a nonlinear system is linearized around an equilibrium point and 

controlled in a local neighborhood of it.  However, in the solar sail elliptical restricted 

three-body problem it has been shown that out-of-plane equilibria do not exist.  In the 

case , if the term  is ignored in Eqs. (18), we can obtain an 

approximated equilibrium point which is positioned in the pulsing coordinate in a 

similar manner to the circular case (since the out-of-plane axis is not pulsating).   

1<<e fe cos

            To consider linear control around an approximated equilibrium point, we 

assume that Eqs. (18) are linearized around the approximated equilibrium point 

( ), and the sail attitude is used as the control variable.  Then, the controlled 

equation can be written as 

1<<e

 

uχχ BA +=′                                                                                            (24) 

 

where,  and  [ ]Tzyxzyx ′′′= ,,,,,χ
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This is a control problem of a time-varying linear system, because both A  and B  are 

time-dependent matrices.  Therefore, making use of standard time-varying linear-

quadratic theory, 17 one can design an optimal control law for the system.  Below, 

however, we provide a simpler but non-optimal control design for the sail control in 

the -plane of the problem, where the equilibria of practical interest are located. xz

            Since the eccentricity of the Earth’s orbit 0.0167e ≈  a simple feedback 

control law can be designed.  First, we design the feedback gains for the system 
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0 0A B′ = +χ χ u                                                                                                  (26) 

 

where matrices  and 0A 0B  are obtained by substituting 0e =  into matrices A  and 

B of Eq. (24) and so a full state feedback control is defined by 

 

G=u χ                                                                                                             (27) 

 

where the gain matrixG  will be obtained by pole assignment.  After a control scheme 

is designed, the stability of the controlled system has to be numerically checked by 

using Floquet theory discussed above, because these gains are not exactly designed 

for the original system, defined by Eq. (24), but for the approximate system, defined 

by Eq. (26).  Here an example is given to verify the possibility of solar sail control 

around an approximated equilibrium point in xz -plane of the Sun-Earth elliptical 

restricted three-body problem.   The required equilibrium point is defined as 

 which requires a sail lightness number0.9, 0, 0.1x y z= = = 0.304779β = .  Then, if 

the desired poles are defined as 5 2 , 5 3 , 6 3i i i− ± − ± ±− the feedback gain matrix G is 

obtained as 

 

5.2520    0.0000    0.6402    2.1416    2.1416   -0.4160
0.0000   13.6908   -0.0000   -5.8857   11.7714   -0.0000
-3.5342   -0.0000   -0.4522   -1.6177   -1.6177    5.7060

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (28) 

 

The behavior of the controlled time-varying system (Eq. (24)) with feedback gains G , 

which is obtained by the approximated system (Eq. (26)) is shown in Fig. 5.  It can be 
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seen that the out-of-plane equiliria is completely controlled by the linear feedback 

scheme in the Sun-Earth elliptical restricted three-body problem. 

 

Conclusions 

This paper has investigated equilibria in the solar sail elliptical restricted three-body 

problem, and the following results obtained: There are no equilibrium surfaces in the 

three-dimensional, elliptical restricted three-body problem, but two-dimensional 

planar equilibrium curves do exist in the plane of the system, with the curve shapes in 

the non-uniformly rotating, pulsating system the same as the circular case; These 

equilibrium points are unstable; Although out-of-plane equilibrium points do not exist, 

when  the sail can be controlled around approximated equilibrium points.  

Therefore, solar sails can still be utilized for practical applications at out-of-plane 

equilibria of the Sun-Earth elliptical restricted three-body problem. 

1e <<
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Figures Captions 

Figure 1. Non-uniformly rotating, pulsating coordinate system 

Figure 2. Region of existence of equilibrium solutions and stability areas analyzed 

Figures 3. Equilibrium solution curves for Earth ( 0=f ) 

(a) far from Earth (1: 0.1β = , 2: 0.5β = , 3: 0.7β = , 4: 0.9β = ) 

(b) vicinity of Earth (1: 0.04β = , 2: 0.1β = , 3: 0.3β = , 4: 0.9β = ) 

Figures 4. Equilibrium solution curves in the vicinity of Mercury (1: 0.04β = , 2: 

0.1β = , 3: 0.3β = , 4: 0.9β = ) 

            (a) ;  (b) 0f =
2

f π
= ;  (c) f π=  

Figure 5. Behavior of controlled time-varying linear system 
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Figure 1. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

0.99 0.995 1 1.005 1.01

-0.01

0.005

0

0.005

0.01

Earth

Forbidden

Forbidden
Allowed

Allowed

Forbidden 

Allowed 
Earth 

Sun

 

 

 

 

 

 

 

 21



Figure 3 (a).  
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Figure 3 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.975 0.98 0.985 0.99 0.995

-0.01

-0.005

0

0.005

0.01

x

y

1
2

3
4

Earth1L 2L

→→→→1,2,3,4

 23



 Figure 4 (a). 
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Figure 4(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
0.369 0.37 0.371 0.372

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-3

x

y

1
2

3
4

→→→→1,2,3,4

M1L 2L

 25



Figure 4 (c). 
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Figure 5. 
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