Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Software Defined Radio using MATLAB & Simulink and the RTL-SDR

Stewart, Robert W. and Barlee, Kenneth W. and Atkinson, Dale S. W. and Crockett, Louise H. (2015) Software Defined Radio using MATLAB & Simulink and the RTL-SDR. Strathclyde Academic Media. ISBN 978-0-9929787-2-3

Full text not available in this repository.

Abstract

The availability of the RTL-SDR for less than $20 brings SDR to the home and work desktops of EE students, professional engineers and the maker community. The RTL-SDR device can be used to acquire and sample RF (radio frequency) signals transmitted in the frequency range 25MHz to 1.75GHz, and using some official software add-ons, these samples can be brought into the MATLAB and Simulink environment for users to develop receivers using first principles DSP algorithms. Signals that the RTL-SDR hardware can receive include: FM radio, UHF band signals, ISM signals, GSM, 3G and LTE mobile radio, GPS and satellite signals, and any that the reader can (legally) transmit of course! In this free book we introduce readers to SDR methods by viewing and analysing downconverted RF signals in the time and frequency domains, and then provide extensive DSP enabled SDR design exercises which the reader can learn from. The hands-on examples begin with simple AM and FM receivers, and move on to the more challenging aspects of PHY layer DSP, where receive filter chains, real-time channelisers, and advanced concepts such as carrier synchronisers, digital PLL designs and QPSK timing and phase synchronisers are implemented. Towards the end of the book, we demonstrate how the RTL-SDR can be used with SDR transmitters to develop a more complete communications system, capable of transmitting text strings and images across the desktop.