Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A simple and accurate approach to solve the power flow for balanced islanded microgrids

Mumtaz, Faisal and Syed, M. H. and Al Hosani, Mohamed and Zeineldin, H. H. (2015) A simple and accurate approach to solve the power flow for balanced islanded microgrids. In: A simple and accurate approach to solve the power flow for balanced islanded microgrids. IEEE, pp. 1852-1856. ISBN 978-1-4799-7992-9

[img]
Preview
Text (Mumtaz-etal-ICEEE-2015-A-simple-and-accurate-approach-to-solve-the-power-flow-for-balanced)
Mumtaz_etal_ICEEE_2015_A_simple_and_accurate_approach_to_solve_the_power_flow_for_balanced.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Power flow studies are very important in the planning or expansion of power system. With the integration of distributed generation (DG), micro-grids are becoming attractive. So, it is important to study the power flow of micro-grids. In grid connected mode, the power flow of the system can be solved in a conventional manner. In islanded mode, the conventional method (like Gauss Seidel) cannot be applied to solve power flow analysis. Hence some modifications are required to implement the conventional Gauss Seidel method to islanded micro-grids. This paper proposes a Modified Gauss Seidel (MGS) method, which is an extension of the conventional Gauss Seidel (GS) method. The proposed method is simple, easy to implement and accurate in solving the power flow analysis for islanded microgrids. The MGS algorithm is implemented on a 6 bus test system. The results are compared against the simulations results obtained from PSCAD/EMTDC which proves the accuracy of the proposed MGS algorithm.