Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Analysis and control of modular multilevel converters under asymmetric arm impedance conditions

Zeng, Rong and Xu, Lie and Yao, Liangzhong and Finney, Stephen J. (2016) Analysis and control of modular multilevel converters under asymmetric arm impedance conditions. IEEE Transactions on Industrial Electronics, 63 (1). pp. 71-81. ISSN 0278-0046

[img]
Preview
Text (Zeng-etal-IEEE-TOIE-2015-Analysis-and-control-of-modular-multilevel-converters-under-asymmetric-arm)
Zeng_etal_IEEE_TOIE_2015_Analysis_and_control_of_modular_multilevel_converters_under_asymmetric_arm.pdf - Accepted Author Manuscript

Download (2MB) | Preview

Abstract

This paper presents a detailed analysis and improved control strategy for Modular Multilevel Converters (MMC) under asymmetric arm inductance conditions. Unlike symmetric conditions, the fundamental ac current is not split equally between the upper and lower arms under asymmetric conditions, and the dc and double-frequency components in the common-mode current also flow into the ac side. To solve these issues, a theoretical analysis of the effect of asymmetric conditions on MMC operation is carried out using equivalent circuits at different frequencies. Three control targets are then presented to enhance the operational performance. A control strategy providing the control of differential-mode current, common-mode current and power balance is designed. The feasibility and validity of the proposed analysis and control strategy are demonstrated by simulation results from a threephase MMC system, and simulation and experimental results from a single-phase MMC system.