Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

X-ray absorption spectroscopic studies on nickel catalysts for epoxidation

Feiters, M.C. and Metselaar, G.A. and Wentzel, B.B. and Nolte, R.J.M. and Nikitenko, S. and Sherrington, D.C. and Joly, Y. and Smolentsev, G.Y. and Kravtsova, A.N. and Soldatov, A.V. (2005) X-ray absorption spectroscopic studies on nickel catalysts for epoxidation. Industrial and Engineering Chemistry Research, 44 (23). pp. 8631-8640. ISSN 0888-5885

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We have studied epoxidation catalysts based on complexes of nickel with acac (acetylacetonate) ligands in the solid state, in solution, and on a polymeric support by X-ray absorption spectroscopy. The EXAFS results show that the degree of association (monomer or trimer) of the Ni(acacR) complexes depends on the bulkiness of R. For R = H, trimers predominate both in the solid state and in solution, whereas for R = p-tBuBn, the monomers that are found in the solid state tend to associate to trimers in solution. The trimers are broken up by excess coreactant, i-butyraldehyde, which converts all Ni complexes to 6-coordinated species. The lower degree of association of the substituted Ni(acacR) complex accounts for its relatively high catalytic activity at low concentration. For the solid complexes, the EXAFS results, which provide one-dimensional structural information, are complemented by XANES simulations defining the three-dimensional structure around Ni. The benzimidazole and pyridine ligands of PBI and AMP-resin partially displace acac in the Ni ligand sphere upon grafting. For the rigid PBI this must result in vacancies in the Ni coordination sphere, which explains why this support gives an active catalyst whereas the AMP-resin does not.