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Background: Isoforms of the PDE4 family of cAMP-specific phosphodiesterases (PDEs) are expressed in a cell type-dependent manner
and contribute to underpinning the paradigm of intracellular cAMP signal compartmentalisation. Here we identify the differential
regulation of the PDE4D7 isoform during prostate cancer progression and uncover a role in controlling prostate cancer cell proliferation.

Methods: PDE4 transcripts from 19 prostate cancer cell lines and xenografts were quantified by qPCR. PDE4D7 expression was further
investigated because of its significant downregulation between androgen-sensitive (AS) and androgen-insensitive (AI) samples. Western
blot analysis, PDE activity assay, immunofluorescent staining and cAMP responsive FRET assays were used to investigate the sub-plasma
membrane localisation of a population of PDE4D7 in VCaP (AS) and PC3 (AI) cell lines. Disruption of this localisation pattern using
dominant-negative protein expression and siRNA knockdown showed that PDE4D7 acts in opposition to proliferative signalling as
assessed by electrical impedance-based proliferation assays.

Results: Here we identify the differential regulation of the PDE4D7 isoform during prostate cancer progression. PDE4D7 is highly
expressed in AS cells and starkly downregulated in AI samples. The significance of this downregulation is underscored by our finding that
PDE4D7 contributes a major fraction of cAMP degrading PDE activity tethered at the plasma membrane and that displacement of
PDE4D7 from this compartment leads to an increase in the proliferation of prostate cancer cells. PDE4D7 mRNA expression is not,
however, directly regulated by the androgen receptor signalling axis despite an overlapping genomic structure with the androgen
responsive gene PART1. PDE4D7, which locates to the plasma membrane, acts to supress aberrant non-steroidal growth signals within the
prostate or AS metastasis.

Conclusions: PDE4D7 expression is significantly downregulated between AS and AI cell phenotypes. This change in expression
potentially provides a novel androgen-independent biomarker and manipulation of its activity or its expression may provide therapeutic
possibilities and insights into contributory aspects of the complex molecular pathology of prostate cancer.

*Correspondence: Professor GS Baillie; E-mail: George.Baillie@Glasgow.ac.uk
5These authors contributed equally to this work.

Received 6 September 2013; revised 20 December 2013; accepted 7 January 2014; published online 11 February 2014

& 2014 Cancer Research UK. All rights reserved 0007 – 0920/14

FULL PAPER

Keywords: PDE4D7; PDE4D; prostate cancer; cAMP; cyclic adenosine mono-phosphate

British Journal of Cancer (2014) 110, 1278–1287 | doi: 10.1038/bjc.2014.22

1278 www.bjcancer.com | DOI:10.1038/bjc.2014.22

mailto:George.Baillie@Glasgow.ac.uk
http://www.bjcancer.com


Prostate cancer is the second most commonly diagnosed
malignancy in men (Siegel et al, 2013). The majority of prostate
cancer cases arise within the epithelial lumen of the prostate and
are dependent upon androgens for proliferation (Grignon and
Sakr, 1994; Wang et al, 2009). The treatment of prostatic tumours
initially revolves around the deprivation of androgens. This
palliative treatment regime leads to a well-characterised remission
in the mass and exhibited symptoms of prostatic adenocarcinoma
(Foley et al, 2011). However, this initial remission is invariably
followed by the emergence and expansion of tumour cells that no
longer depend upon the canonical androgen signalling axis to drive
proliferation and disease progression (Feldman and Feldman,
2001). There is great interest in trying to determine the nature of
the molecular events surrounding the progression into androgen-
insensitive (AI) cell phenotype (Wegiel et al, 2010).

It has been reported that differential Gs-coupled GPCR
signalling, PKA catalytic subunit switching and adenylyl cyclase
isoform expression are observed between the androgen-sensitive
(AS) and AI cancer phenotypes (Kasbohm et al, 2005; Kvissel et al,
2007; Flacke et al, 2013), implying that alterations in the regulation
of cAMP signalling cascades are an important factor in prostate
cancer progression (Merkle and Hoffmann, 2011). The actions
of the ubiquitous second messenger cAMP are governed
by the processes of spatially distinct synthesis and degradation
where adenylyl cyclases mediate the synthesis of cAMP, and
cyclic nucleotide phosphodiesterases (PDEs) represent the only
known means by which cAMP is degraded in cells (Houslay, 2010).

There are 11 families of cyclic nucleotide PDEs, of which 3 are
able to specifically hydrolyse cAMP, 5 hydrolyse both cAMP and
cGMP and the remaining families are specific for cGMP (Francis
et al, 2011). Complex mechanisms of isoform expression within
these families are coupled with different modes of enzymatic
regulation to underpin the paradigm of compartmentalised cAMP
signalling (Houslay, 2010; Francis et al, 2011). The PDE4 family of
cAMP-specific PDEs are of particular note for their described
regulatory functions and expression patterns (Houslay and Adams,
2003; Conti and Beavo, 2007). From four genes (PDE4A/B/C/D), a
series of isoforms are encoded with distinct N-terminal regions
shown to be invariably associated with targeting to specific
intracellular sites and signalling complexes (Huston et al, 2006;
Lynch et al, 2007; Keravis and Lugnier, 2010; MacKenzie et al,
2011; Murdoch et al, 2011). This form of compartmentalisation
allows multiple signalling events to be independently regulated in
temporally and spatially distinct intracellular locales. Therefore,
dysregulation of PDE-mediated cAMP compartmentalisation may
underpin abrogation of cellular function in disease states (Houslay
et al, 2007; Houslay, 2010).

In this study, we set out to determine if the expression
levels of PDE4 isoform variants are altered during the AS to AI
transition and if this has consequences for cellular proliferation.
The mRNA expression levels of PDE4 families and isoform
variants were evaluated in 19 prostate cancer cell lines and
xenografts and our analysis uncovered that total PDE4D mRNA
levels are decreased during the AS to AI transition. Further
investigation revealed that a significant proportion of this decrease
is due to decreasing PDE4D7 expression, and that this is sustained
at protein level leading to a reduced ability for prostate cancer
cells to hydrolyse cAMP. We also describe how a population
of PDE4D7 exhibits a targeted localisation pattern and regulates a
sub-plasma membrane cAMP compartment. Crucially, we find
that disruption of this compartmentalisation leads to an increase in
cellular proliferation. Last, we describe how the expression of
PDE4D7 is regulated outside the control of canonical androgen
signalling, despite the unique exon composition of PDE4D7
overlapping with a previously described androgen responsive
gene, namely prostate androgen-regulated transcript-1 (PART1;
Lin et al, 2000).

MATERIALS AND METHODS

Materials. Forskolin, 3-isobutyl-1-methylxanthine (IBMX),
rolipram, dihydrotestosterone and hydroxyflutamide were pur-
chased from Sigma (Gillingham, UK). PDE4D-specific antisera
were described previously (MacKenzie et al, 2002), anti-GFP and
GP130 antisera were purchased from Abcam (Cambridge, UK) and
anti vsv-tag antisera from Sigma. A PDE4D7 antibody was raised
against a peptide mapping the unique N-terminal region of
PDE4D7 and specificity was assessed against peptide array.

Molecular biology. PDE4D7 was sub-cloned into peGFP-N1
(Clontech, Mountain View, CA, USA) and pcDNA3.1 (Life
Technologies, Paisley, UK) and tagged with a VSV epitope label.
A dominant negative D559A mutation was introduced to the
PDE4D7 expression construct using Quickchange site-directed
mutagenesis kit (Stratagene, La Jolla, CA, USA; McCahill et al,
2005). Targeted cAMP responsive FRET probes were a kind gift
from Professor M Zaccolo (Oxford, UK; Terrin et al, 2006). Pluc
luciferase constructs were purchased from Origene (Rockville, MD,
USA) and Renilla pRL-TK from Promega (Madison, WI, USA).
Promoter regions cloned from genomic DNA prepared from VCaP
cells using a high salt extraction buffer (10 mM Tris, pH 7.5,
400 mM NaCl, 100 mM EDTA, 0.6% SDS), protein precipitated with
6 M NaCl before precipitation of DNA using one sample volume of
100% ethanol. Amplification of genomic regions was carried out
with platinum pfx polymerse from Life Technologies. Sequence
data for all oligonucleotides used in this study can be found in
Supplementary Table 1.

Mammalian cell culture. VCaP, LNCaP, PC3 and DU145
prostate cancer cell lines were purchased from ATCC (Teddington,
UK) and were maintained in RPMI1640 supplemented with 10%
FBS, whereas DU145 cells were cultured in DMEM supplemented
with 10% FBS. Transfections were carried out using Lipofectamine
2000 (Life Technologies) as per the manufacturer’s instruction.
Serum and media were purchased from Sigma. siRNA against
PDE4D7 (50-AUACCUGUGAUUUGCUUUC-30, targeting the
unique N-terminal region of PDE4D7) and panPDE4D (Lynch
et al, 2005) were purchaced from Ambion (Life Technologies).

RT-qPCR. Total RNA from human prostate cancer cell lines and
xenografts were a kind gift from Guido Jenster of Erasmus Medical
Centre, Rotterdam, The Netherlands. Additional total RNA was
harvested using Trizol (Life Technologies) according to the
manufacturer’s instruction, DNase treated (Roche, Welwyn
Garden City, UK) followed by on column purification using
RNeasy RNA extraction kit (Qiagen, Manchester, UK). First-strand
cDNA synthesis was carried out on 500 ng total RNA using
superscript VILO and random hexamer oligonucleotide primers
(Life Technologies). qPCR reactions were conducted using the ABI
Prism 7300 qPCR thermocycler and analysis software (60 1C 30 s,
95 1C 10 min followed by 40 cycles of 95 1C 15 s, 60 1C 1 min).
Reactions were conducted in qPCR Fastmix (VWR, Lutterworth,
UK). The primers used in this study can be found in
Supplementary Information and were sourced from Eurofins
MWG Operon (Ebersberg, Germany). Final primer concentration
used in RT-qPCR was 250 nM. Data analysis was conducted using
GAPDH expression as an internal reference after ensuring its
stable expression throughout the sample set.

Protein biochemistry and western blotting. Immunoprecipita-
tions and western blots for PDE4D7 were carried out as previously
described (MacKenzie et al, 2011), using antisera raised against the
N-terminal regions of PDE4D7 (Baillie Laboratory, Glasgow, UK),
western blotting was conducted using previously described antisera
against PDE4D (MacKenzie et al, 2002). Western blots were
analysed using HRP-conjugated secondary antisera (Sigma), or
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using the Odyssey infrared system (Licor, Lincoln, NE, USA).
Briefly, cells for lysis were washed in PBS and lysed for 40 min in
3T3 extraction buffer (1% (v/v) Triton X-100, 10% (v/v) glycerol,
25 mM HEPES, 2.5 mM EDTA, 150 mM NaCl, 50 mM NaF and
30 mM NaPPi) treated with protease inhibitor cocktail (Roche).
Insoluble material was removed by centrifuge at 14 000 g, and pre-
cleared with protein G-conjugated sepharose beads for 30 min at
4 1C. Cleared lysates were incubated with selected antisera
overnight at 4 1C. Complexes were precipitated with Protein G
Sepharose for 2 h at 4 1C and spun down at 3000 g. Complexes
were washed three times with IP wash buffer (100 mM NaCl, 20 mM

HEPES, MgCl2 10 mM, EDTA 2 mM and Triton X-100 0.1% (v/v))
before suspension in sample buffer and western blot analysis. For
subcellular fractionation, VCaP cells were lysed in KHEM buffer
(50 mM KCl, 10 mM EGTA, 2 mM MgCl2, 1 mM dithiothreitol and
50 mM HEPES; final pH, 7.2) by disruption with a 25-G syringe.
Lysates were centrifuged at 3000 g for 5 min and the resulting
supernatant centrifuged at 100 000 g for 30 min to pellet the
membrane-enriched fraction from the cytosolic supernatant.

Phosphodiesterase activity assay. Phosphodiesterase activity
assay was performed as previously described, using 1mM cAMP
substrate and following linear rates (Marchmont and Houslay,
1980).

Immuno-fluorescence staining. Cells were fixed for 5 min in TBS
(20 mM Tris-Cl pH 7.6, 150 mM NaCl, 4% paraformaldehyde, 5%
sucrose), permeabilised by incubation with 0.1% Triton X-100 in
TBS and blocked (10% appropriate serum and 2% BSA, 2% marvel
milk in TBS). Primary antibodies were diluted to the required
concentration in blocking buffer diluted 1 : 1 with TBS. 1 : 400
diluted Alexa Fluor-conjugated IgG were used for secondary
visualisation.

Confocal microscopy. Confocial microscopy was carried out on
live cells expressing GFP or GFP fusion proteins, or fixed samples
using a Zeiss Pascal laser-scanning confocal microscope and an
Axiovert 100 microscope with an � 63/1.4 NA plan apochromat
lens (Zeiss, Thornwood, NY, USA) was used for imaging. Live cells
were maintained in imaging glucose supplemented PBS while
images were recorded.

cAMP responsive FRET. cAMP FRET probes used in this study
were first characterised by Terrin et al (2006). cAMP responsive
FRET experiments were conducted on an Olympus IX71 inverted
microscope equipped with a FLUAR � 100 NA1.3 oil-immersion
objective (Zeiss). The microscope was equipped with a CCD camera
(Sensicam QI, PCO, Kelheim, Germany), a software-controlled
monochromator (Polychrome IV, TILL Photonics, Uckfield, UK)
and a beam-splitter optical device (Multispec Microimager, Optical
Insights, Santa Fe, NM, USA). Images and FRET traces were
acquired using MetaFluor software (Molecular Devices, Sunnyvale,
CA, USA). The resulting data are expressed as % max FRET
response. Background-subtracted FRET responses were measured
as a ratio of 480/545-nm fluorescence emission intensities on
excitation at 430 nm and expressed as a % of the maximal FRET
response, where initial forskolin-stimulated responses (DR1/R0,
where R1¼ FRET ratio at time t (s), R0¼ FRET ratio at time zero)
are represented as a % of maximum (DRm/R0, where Rm¼max
FRET ratio, R0¼ FRET ratio at time zero). Graphs are presented as
means±standard deviation of a minimum of 15 individual cell
experiments. Coverslips were held within screw-closed metal baths
allowing transmission of excitation and emission light through the
coverslip, whereas images were recorded. Live cells were adherent to
collagen-coated coverslips were maintained in imaging saline
(125 mM NaCl, 5 mM KCl, 1 mM Na3PO4, 1 mM MgSO4, 20 mM

HEPES, 1 mM CaCl2, 5.5 mM Glucose 20 mM) for the duration of
experimentation. FRET responses were recorded post treatment
with 10mM forskolin or forskolin supplemented with rolipram,

whereas maximum FRET response was recorded at saturated levels
post 100mM Forskolin/IBMX treatment.

Xcelligence (Roche) proliferation assay. Cell proliferation is
measured as a function of changing electrical impedance as per
the manufacturer’s instruction and analysed using RTCA software
(Roche). Values are represented by cell index numbers, which are a
dimensionless unit of measurement representing the measurement
of zero impedance when cells are absent and increasing as cells
divide and adhere to 96-well electrode plates. Cells were plated at a
density of 30 000 per well before measurement.

Dual luciferase assays. Dual-Glo Reagents were purchased from
Promega and used per the manufacturer’s instruction. Assays were
measured using a Mithras plate reader from Berthold and
expressed as a ratio of Firefly/Renilla luciferase RLU signal.

Statistics. Where data followed a Gaussian distribution the
Student’s two-tailed t-test was used, and a P-value of less than
0.05 was considered to be statistically significant. Where the
distribution of data was observed to be skewed (as observed in
box–whisker plots), the Mann–Whitney statistical test was also
used. A P-value of less than 0.05 was considered to be statistically
significant.

RESULTS

PDE4 expression in prostate cancer cell lines and xenografts.
PDE4 isoforms exhibit tissue- and cell type-specific expression
patterns (Houslay, 2010). To ascertain which families of PDE4
isoforms may be deregulated during prostate cancer progression 19
human prostate cancer cell lines and xenografts were selected and
screened for their PDE4 content using RT-qPCR. The sample set
was composed of established cell lines and xenografts including the
PC346 cell line panel (Supplementary Table 2; Marques et al,
2006). PDE4A, PDE4B and PDE4D transcripts were detected; with
PDE4D forms observed as the most highly expressed PDE4 family.
By separating the prostate cancer models into AS and AI categories
(10 and 9 samples, respectively), we found that PDE4D transcripts
are expressed at significantly downregulated levels in the AI
category (Figure 1A–C). PDE4D isoform expression was then
characterised by RT-qPCR and subjected to identical AS vs AI
stratification (individual sample profiles can be found in
Supplementary Table 3). Our analyses show that the PDE4D3,
PDE4D4 and PDE4D7 isoforms all exhibit downregulation of
mRNA expression between the AS and AI groups (P¼ 0.02,
P¼ 0.02 and P¼ 0.01, respectively). PDE4D7 is the most highly
expressed isoform in AS samples and undergoes the most profound
reduction in transcript abundance (Figure 1D). We observed no
correlation when separating the data into cell line and xenograft
groupings, nor any correlation with PDE4 expression and primary
vs metastatic origin.

Validation of PDE4D7 mRNA regulation at protein level. We
selected the PDE4D7 isoform for further investigation due to the
dramatic reduction in transcript abundance observed in AI
samples. The PDE4D7 amino-acid sequence categorises it as a
long PDE4D isoform, as it contains both of the UCR1 and UCR2
regulatory domains and a unique N-terminal sequence (Houslay,
2010). The general decrease in PDE4D mRNA expression is also
observed at protein level by western blotting of prostate cancer cell
lines using PDE4 sub-family- and isoform-specific antisera
(Figure 2A). Immunoprecipitation of PDE4D7 protein from AS
VCaP and AI PC3 cells also mirrored the decrease in PDE4D7
isoform mRNA abundance between AS and AI phenotypes
(Figure 2B). In order to ensure the observed downregulation of
PDE4 expression was physiologically relevant, PDE assays were
conducted on whole-cell lysates from both VCaP and PC3 cells.
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This enabled us to assess the impact of PDE4 downregulation on
the cellular ability to degrade cAMP (Figure 2C). In doing this, we
used the PDE4-selective inhibitor rolipram (10 mM) to determine
the contribution that PDE4 enzymes made to overall cAMP
hydrolysis. We show that the VCaP cell line exhibits a markedly
higher level of rolipram-sensitive PDE4 activity (12.7 pmol per
cAMP per min per 1 000 000 cells) compared with that exhibited
by PC3 cells (0.2 pmol per cAMP per min per 1 000 000 cells;
Po0.0001). We conclude that the observed reduction in PDE4D
transcript levels is recapitulated in the abundance of functional
protein and may indicate a shift in cAMP signalling occurring in
androgen independence.

A population of PDE4D7 localises to the sub-plasma membrane
compartment of AS VCaP cells. In keeping with the PDE4D
domain structure, PDE4D7 exhibits a unique N-terminal region
(Wang et al, 2003). Given that the ‘core’ PDE4D protein is a
soluble species that is found in the cytosol of cells (Bolger et al,
1997; Jin et al, 1998), these N-terminal regions define unique
intracellular targeting. We therefore set out to investigate the
intracellular localisation of PDE4D7 in VCaP cells. Unfortunately,
the only available antisera against PDE4D7 was unsuitable
for immunofluorescence. We therefore utilised PDE4D7-GFP
(Figure 2D) and PDE4D7 vsv tag (Figure 2E) fusion constructs
to investigate PDE4D7 sub-cellular localisation. As well as the
presence of cytosolic distributed PDE4D7, we observed that a
distinct population of PDE4D7 localises to the plasma membrane.
In support of this observation, we also found that PDE4D7 is
concentrated in the membrane-enriched fractions of VCaP cells
when whole-cell lysates were separated into cytosolic and
membrane-enriched preparations (Supplementary Figure 1).

PDE4D7 modulates cAMP hydrolysis at the sub-plasma
membrane compartment of VCaP cells. As a fraction of PDE4D7
is targeted to the sub-plasma membrane, we wished to evaluate
whether it had a role in regulating cAMP concentration at this
locale as a functional signalling compartment. In order to do this,
we utilised a genetically encoded FRET cAMP sensor system.
A non-targeted probe that locates to the cytosol (H30) and a sensor

engineered to localise to the sub-plasma membrane (mH30) were
used to comparatively investigate this sub-cellular compartmenta-
lisation of cAMP, as described by Terrin et al (2006).

The adenylyl cyclase activator forskolin (10 mM) or forskolin
together with the PDE4-selective inhibitor rolipram (10 mM) were
used to assess compartmentalised PDE4 activity in FRET sensor-
expressing prostate cancer cells. Maximal (100%) FRET responses
were measured using a cocktail of forskolin and IBMX (each at
100 mM) to which steady-state cAMP levels for each primary
treatment was compared. We uncovered that PDE4 activity has a
substantial and similar role in regulating cAMP levels within both
the cytosol (H30) and sub-plasma membrane compartments
(mH30) of AS VCaP cells (Figure 3A and B). This is in profound
contrast to AI PC3 cells, which display significantly greater FRET
responses because of reduced PDE activity at the sub-plasma
membrane compartment and bulk cytosol. This is in line with the
significant differences in PDE activity measured by cAMP PDE
assay of whole-cell lysates.

RNAi knockdown approaches have previously been used to
evaluate the functional role of PDE4 sub-families and isoforms
(Rampersad et al, 2010; Lynch et al, 2005). However, they inform
on the total isoform population rather than just the targeted
species and reduce the global rate of cAMP hydrolysis.
In AS VCaP cells, we wished to determine whether plasma
membrane-bound endogenous PDE4D7 contributes to the
profound role we have uncovered in regulating sub-plasma
membrane cAMP levels. We have previously described the use of
a dominant-negative approach in several systems, where a
catalytically inactive isoform is ectopically overexpressed in cells
(McCahill et al, 2005; Ong et al, 2009). This acts to displace the
cognate endogenous isoform from anchors that sequester it while
having no effect on soluble species and the overall ability of the cell
to degrade cAMP (McCahill et al, 2005). Using this approach, we
generated a catalytically inactive form of PDE4D7 through point
mutation of a single aspartic acid residue (D559A, PDE4D7). This
residue lies within the catalytic site of PDE4 enzymes and has a key
role in catalysis (Houslay and Adams, 2003; Huai et al, 2003).
As a control, we also employed a catalytically inactive PDE4D3
construct (D484A, PDE4D3), as described previously (McCahill
et al, 2005).
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Figure 1. Box plots represent the distribution of PDE4 transcripts across 10 AS and 9 AI cell lines and xenografts. (A–C) PDE4A/B/D expression in
prostate cancer cell lines and xenografts was detected by RT-qPCR. (D) PDE4D1-9 expression was assessed by RT-qPCR. PDE4D7 exhibits the
highest expression of PDE4D transcripts in prostate cancer cells and is significantly downregulated in AI cells (P¼0.01).
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VCaP cells co-expressing catalytically inactive PDE4D and
cAMP-responsive FRET constructs were then used to investigate if
forskolin-induced localised cAMP accumulation is exacerbated by
dislodging endogenous PDE4D7 from native anchoring sites
(Figure 3C). We found that displacing PDE4D7 severely disrupted
localised cAMP hydrolysis at the plasma membrane as shown by a
significant increase in the mH30 FRET response. In contrast,
similar levels of ectopically expressed inactive PDE4D3 had no
effect on the ability of forskolin to cause cAMP accumulation at the
plasma membrane compartment (Figure 3C–F). This dominant-
negative induced response was only observed using the plasma
membrane associated probe and was not detected in the cytosol.
These data indicate that catalytically inactive PDE4D7 specifically
displaces members of an endogenous, active PDE4D7 population
from the plasma membrane and that PDE4D7 has a major role
in regulating sub-plasma membrane cAMP levels in prostate
cancer cells.

PDE4D7 regulates prostate cancer proliferation. The impact of
PDE4D7-mediated cAMP hydrolysis on cellular proliferation was
then examined in order to assess if the downregulation of PDE4D7
expression during the onset of the AI phenotype impacted on
proliferation rate. Dominant-negative PDE4D7 expression was
employed in order to observe how the displacement of PDE4D7
from endogenous anchoring sites and the accumulation of
cAMP at the plasma membrane-affected VCaP proliferation.
The catalytically active wild-type PDE4D7 was used in comparison
to dominant-negative expression (Figure 4C). We found that
expression of the inactive PDE4D7 led to a marked increase in
VCaP cell proliferation rate (P¼ 0.02).

Having found that displacement of PDE4D7 was sufficient to
elicit an increase in proliferation, we then decided to investigate if
downregulation of PDE4D7 would have similar results. We utilised
specific siRNA-mediated knockdown of global PDE4D7 and found
that depletion of the isoform led to an increase in proliferation rate
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over and above that observed for global PDE4D depletion
(P¼ 0.06). This further indicates a specialised role for the PDE4D7
isoform in prostate cell biology (Figure 4F). The efficiency of
siRNA-mediated protein knockdown was assessed for each
oligonucleotide using western blot densitometry (Supplementary
Figure 2).

We next investigated whether re-expression of PDE4D7 in PC3
cells was sufficient to impede cell proliferation. Overexpression of
wild-type PDE4D7 resulted in a significant decrease in PC3 cell
proliferation (Po0.01), indicating that PDE4D7-mediated cAMP
degradation within the AI cells results in inhibition of proliferative
signalling events (Figure 3G–I). To substantiate if increased cAMP
signalling facilitates a growth advantage in the AI phenotype, we
then stimulated PC3 cells with the adenylyl cyclase activator,
forskolin (10 mM) and observed a marked increase in proliferation
rate, which was insensitive to treatment with the PDE4 inhibitor
rolipram (10 mM; Supplementary Figure 3). The lack of response to
rolipram is consistent with our findings that PDE4 activity and

PDE4D7 expression is downregulated in PC3 cells, and further
suggests a growth advantage is imparted by suppression of
PDE4D7 expression and increased cAMP signalling.

PDE4D7 is not directly regulated by the androgen receptor.
Bioinformatic EST sequence inspection reveals that the PDE4D7
transcript encodes a UTR that maps to a genomic region
overlapping antisense with a previously characterised androgen-
regulated gene, namely PART1 (Lin et al, 2000; Sidiropoulos et al,
2001; ESTs DA627904, DB213544, DB22103, DB224202,
DB226810, DB230503, DB237063 and DR003683; Figure 5A).
We also found that PART1 and PDE4D7 mRNA share similar
levels of expression within a sample set of prostate cancer cell lines
and xenografts (Figure 5B). Given the decrease in PDE4D7 mRNA
abundance in AI samples and the genomic relationship to PART1,
we felt it important to assess whether PDE4D7 expression is
regulated by the androgen receptor. Using luciferase reporter
constructs, we found that the promoter region of PDE4D7

140 VCaP (AS)

H30
100 120

100

80

60

40
10 �M Fsk
10 �M Fsk+Rp
10 �M Fsk/dnD7

20

%
 o

f M
ax

im
um

 c
A

M
P

re
sp

on
si

ve
 F

R
E

T

0

–20
60 120 180 240 300

T2

T1

480 540360 420

90
80
70
60
50
40

%
 o

f M
ax

im
um

 c
A

M
P

re
sp

on
si

ve
 F

R
E

T

30
20
10
0

Mock dnPDE4D3

Transfection

H30 mH30

dnD7

RET sensor
Mock

Mock

Tr
ea

tm
en

t

10 �M
Forskolin

10 �M
Rolipram dnPDE4D7

Treatment / transfection

dnPDE4D3
Low

[cAMP]

High
[cAMP]

dnPDE4D

dnD3 dnD7 dnD3

dnPDE4D7

mH30

H30 FRET response mH30 FRET response

PC3 (AI)120

100

80

60

%
 o

f M
ax

im
um

 c
A

M
P

re
sp

on
si

ve
 F

R
E

T

%
 o

f M
ax

im
um

 c
A

M
P

re
sp

on
si

ve
 F

R
E

T

40

20

0

140 VCaP (AS)
PC3 (AI)120

100

80

60

40

20

0
10 �M Fsk 10 �M Fsk / Rp 10 �M Fsk / Rp10 �M Fsk

TreatmentTreatment

T (s)

Figure 3. (A and B) cAMP responsive FRET analysis shows that rolipram-sensitive PDE4 activity suppresses cAMP accumulation induced by 10mM

forskolin in VCaP cells (white bars, Po0.01). This PDE4-mediated cAMP degradation is observed in the cytosol (A—H30) and at the plasma
membrane (B—mH30) of the AS cell line. PC3 cells (shaded bars) exhibited negligible attenuation of cAMP concentration at the bulk cytosol or at
the plasma membrane in response to 10mM forskolin (Fsk) or forskolin/rolipram (Fsk/Rp) treatment. (C) PDE4D7 constrains cAMP accumulation at
the plasma membrane of VCaP cells. Dominant-negative PDE4D (dnPDE4D7) isoform expression has no significant impact on the ability of VCaP
cells to control global cAMP accumulation in the bulk cytosol in response to 10mM forskolin treatment (white bars). The mH30 construct (shaded
bars) exhibited a significant change in FRET response (B30% over mock transfection) when the reporter construct was co-transfected with
dominant-negative PDE4D7 (Po0.01). Dominant-negative PDE4D3 (dnPDE4D3) expression elicited no significant change in FRET response over
mock transfection. (D) Example FRET traces depicting the significant effect of dnPDE4D7 on the plasma membrane cAMP dynamics in comparison
to forskolin (Fsk) and forskolin/rolipram (Fsk/Rp) treatment of VCaP cells. T1 and T2 denote treatment times for the forskolin alone trace where the
addition of 10mM forskolin is shown by T1 and T2 indicates the addition of 100 mM forskolin/IBMX. (E) H30 FRET sensors and PDE4D constructs
were expressed in at equivalent levels in VCaP cells as assessed by western blot analysis. Upper bands represent the FRET probes, whereas lower
bands represent transfected PDE4D constructs. (F) Example pseudo-colour images depicting the change in FRET response upon 10mM forskolin
treatment and dominant-negative expression in VCaP cells expressing mH30.

PDE4D7 downregulation in prostate cancer mediates growth BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2014.22 1283

http://www.bjcancer.com


(PDE4D7g) exhibited no response to androgen stimulation in
VCaP cells, but was activated by increased intracellular calcium
levels induced by ionomycin (3 mM), presumably due to the
presence of a putative NFAT-binding motif within the PDE4D7
promoter (50-GGAAAATcctgtATTTTCC-30, 500 bp upstream of
NM_001165899.1 exon 1; Figure 5C).

To assess if long-range androgen receptor enhancer elements
impacted PDE4D7 expression, a series of steroid deprivation and
androgen response experiments were performed on the VCaP cell
line. Prostate-specific antigen (PSA) and PART-1 transcript levels
were used as a measure of androgen receptor activity, whereas
chromogranin A and neurone-specific enolase mRNA were
measured to assess the neuroendocrine differentiation commonly
associated with steroid ablation of AS cell lines (Amorino and
Parsons, 2004). PDE4D5 transcript levels were measured along-
side PDE4D7 in order to investigate if any observed change in
transcript abundance was specific to PDE4D7, or common to other
PDE4D long isoforms expressed in prostatic cells. As expected,
48 h of exposure to media supplemented with charcoal-stripped
serum led to a decrease in the expression of the androgen-regulated
PSA and PART-1 transcripts, whereas neurone-specific enolase
and chromogranin A expression increased (Figure 5D). PSA and
PART-1 transcript levels were upregulated by treatment with the
androgen receptor agonist, dihydrotestosterone (10 nM, 48 h
treatment) and inhibition of the androgen receptor by the
antagonist, hydroxyflutamide (1 mM, 48 h treatment) led to a
decrease in PSA transcription activity. These data indicate that
transcription from the PDE4D7 locus is not directly regulated by
the androgen receptor, unlike the PDE4D7 cis-natural antisense
transcript, PART1. It is therefore an intriguing possibility that
PDE4D7 expression may be epigenetically modulated, as PDE4D

promoters have been shown to be alternately methylated in a
tissue-dependent and temporally regulated manner during mouse
embryo development (Huang et al, 2013).

DISCUSSION

The role of tightly regulated cAMP signalling cascades in cellular
function and tissue homeostasis is underpinned by the enzymatic
activity of cAMP PDEs (Houslay et al, 2007, 2010). As PDEs have a
pivotal role in determining intracellular cAMP concentrations and
where tethered populations shape gradients of cAMP thereby
underpinning compartmentalisation, then we can expect that
inappropriate changes in PDE expression and activity will lead to
alterations in the balance of signalling events mediated by cyclic
nucleotides that may then facilitate disease state progression.
cAMP-mediated signalling pathways within the prostate have long
been connected with epithelial tumorigenesis and cancer progres-
sion (Cho-Chung and Nesterova, 2005; Merkle and Hoffmann,
2011; Zhang et al, 2011; Sarwar et al, 2013). Synergy between the
AR and protein kinase A in AS cells can lead to an increase in the
transcription of androgen-regulated genes and under some
circumstances lead to transactivation of the AR and cellular
differentiation (Komiya et al, 2009; Desiniotis et al, 2010). There is
also evidence to suggest that the more advanced phenotypes of AI
prostate cancer also become more dependent upon cAMP
signalling as cells shift from steroidal to non-steroidal growth
factor signalling pathways in response to androgen deprivation
treatments (Gutierrez-Canas et al, 2003; Desiniotis et al, 2010;
Flacke et al, 2013). In this light, it is interesting that we find PDE4
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isoforms are highly expressed in AS prostate cancer cells and
significantly downregulated in AI cells, and that we can attribute a
significant proportion of this decrease to a single PDE4 isoform,
namely PDE4D7.

Previous work by Ückert et al (2001, 2006) explored the
expression of PDE families in the histological zones of the prostate
by using RT–PCR, immunofluorescence and selective PDE
inhibitors. They found that multiple PDE families, including
PDE4, are present within the different histological zones of the
prostate and noting significant PDE4 expression within the luminal
epithelia. However, the complexity of isoform expression and cell-
specific transcription were not addressed during their investigation.
A more recent study further connected the increased expression of
the PDE4D sub-family with prostatic tumorigenesis (Rahrmann
et al, 2009). A T2/onc transposon insertion at the PDE4D gene
(resulting in the putative overexpression of short-form PDE4Ds
but potentially disrupting PDE4D long forms) potentiated the
neoplasia of prostatic epithelial cells. This is particularly interesting

with regards to the observed high expression of PDE4 mRNA in
AS samples (an observation also made in patient materials by
Rahrmann et al) and is in line with a recent study indicating that
PDE4D homozygous deletion or micro-deletions within the gene
paradoxically lead to an increase in expression and promote cancer
of many types (Lin et al, 2013). However, this does not explain the
downregulation of PDE4 mRNA in the AI phenotype nor address
the importance of isoform specificity to tumorigenesis and cancer
progression.

The tethering of PDE isoforms to specific sub-cellular locales via
isoform-specific N-terminal and conserved regulatory domains
allows for the paradigm of compartmentalised cAMP dynamics to
explain how multiple independent cAMP signalling events can
occur simultaneously (Houslay, 2010). PDE4D7 follows in this
paradigm by being tethered to and constraining cAMP accumula-
tion at the plasma membrane. This is the first functional activity
attributed to this long PDE4D7 isoform, although it is akin to other
long-form PDE4D isoforms such as PDE4D3 and PDE4D5, which
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have been demonstrated to control distinct cellular processes
through selective association with signalling scaffolds (Lynch et al,
2005; Terrin et al, 2012). The positioning of PDE4D7 tethers it in
prime position to regulate the activities of plasma membrane-
bound adenylyl cyclases and therefore mediate Gs-coupled GPCR
signal transduction across the plasma membrane. The increased
proliferation rate of VCaP cells when PDE4D7 is displaced or
disrupted does indicate that the isoform mediates proliferative
signalling, which with downregulation of endogenous PDE4D7
could increasingly become over-active and ultimately contribute to
the AI phenotype by exacerbating the paracrine and autocrine
signalling loops, which can sustain AR transactivation and AI
growth of prostate cancer cells (Gutierrez-Canas et al, 2003).
Interestingly, up until this evaluation, little or nothing was known
about the properties of PDE4D7 despite the fact that susceptibility
markers for ischemic stroke map to the region of Chr5q12 where
PDE4D7 and the overlapping PART1 exons locate (Gretarsdottir
et al, 2003). The cardiogenic/carotid stroke-associated haplotype
was shown to extend over the region encoding the N-terminal
region unique to PDE4D7 as well as its putative promoter regions,
which led to a lowered PDE4D7 expression in stroke. Importantly,
it has been shown that overall mortality was 20% higher in prostate
cancer patients with pre-existing stroke compared with those
without and that different forms of androgen-deprivation therapy
may increase the risk of stroke/transient ischaemic attacks
(Jespersen et al, 2011; Razzak, 2012).

PDE4D7 has potential as a promising target for use as a
biomarker in prostate cancer. Its high expression in AS cells,
coupled with its subsequent decline into AI cells may provide a
novel modular marker that could be used to diagnose disease stage.
An analysis of PDE4D7 expression from extended numbers of
patient-derived prostatic cancers would be required to validate its
use as a clinically effective biomarker and to elucidate any
correlative potential that PDE4D7 expression may have with
patient survival and likelihood of disease progression. Moreover, if
high PDE4D7 expression is a contributing factor to early
tumorigenesis, then pharmacological modulation of its activity
may be beneficial, although this would have to be balanced against
increases in cAMP signalling and induction of AI cells (Lin et al,
2013).

We conclude that (i) PDE4D7 is differentially regulated between
AS and AI disease and this is independent of canonical
AR signalling. (ii) PDE4D has a significant role in prostatic
cAMP hydrolysis and cell proliferation. (iii) PDE4D7 has the
potential to be used as a novel biomarker for diagnosis of the
transition to AI prostate cancer, and that manipulation of PDE4D7
activity or expression could usefully be investigated further for its
therapeutic potential.
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