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Abstract

Given a permutation σ = σ1 . . . σn in the symmetric group Sn, we say that σi
matches the marked mesh pattern MMP(a, b, c, d) in σ if there are at least a points
to the right of σi in σ which are greater than σi, at least b points to the left of σi in
σ which are greater than σi, at least c points to the left of σi in σ which are smaller
than σi, and at least d points to the right of σi in σ which are smaller than σi.

This paper is continuation of the systematic study of the distributions of quad-
rant marked mesh patterns in 132-avoiding permutations started in [9] and [10]
where we studied the distribution of the number of matches of MMP(a, b, c, d) in
132-avoiding permutations where at most two elements of a, b, c, d are greater than
zero and the remaining elements are zero. In this paper, we study the distribution
of the number of matches of MMP(a, b, c, d) in 132-avoiding permutations where at
least three of a, b, c, d are greater than zero. We provide explicit recurrence relations
to enumerate our objects which can be used to give closed forms for the generating
functions associated with such distributions. In many cases, we provide combina-
torial explanations of the coefficients that appear in our generating functions.

1. Introduction

The notion of mesh patterns was introduced by Brändén and Claesson [2] to provide

explicit expansions for certain permutation statistics as, possibly infinite, linear
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combinations of (classical) permutation patterns. This notion was further studied

in [1, 3, 5, 6, 9, 12].

Kitaev and Remmel [6] initiated the systematic study of the distributions of

quadrant marked mesh patterns on permutations. The study was extended to

132-avoiding permutations by Kitaev, Remmel and Tiefenbruck in [9, 10], and the

present paper continues this line of research. Kitaev and Remmel also studied the

distributions of quadrant marked mesh patterns in up-down and down-up permu-

tations [7, 8].

Let σ = σ1 . . . σn be a permutation written in one-line notation. Then we will

consider the graph of σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For

example, the graph of the permutation σ = 471569283 is pictured in Figure 1. Then

if we draw a coordinate system centered at a point (i, σi), we will be interested in

the points that lie in the four quadrants I, II, III, and IV of that coordinate system

as pictured in Figure 1. Let N = {1, 2, . . .} denote the positive integers. For any

a, b, c, d ∈ {0} ∪N and any σ = σ1 . . . σn ∈ Sn, the set of all permutations of length

n, we say that σi matches the quadrant marked mesh pattern MMP(a, b, c, d) in

σ if, in G(σ) relative to the coordinate system which has the point (i, σi) as its

origin, there are at least a points in quadrant I, at least b points in quadrant II, at

least c points in quadrant III, and at least d points in quadrant IV. For example, if

σ = 471569283, the point σ4 = 5 matches the marked mesh pattern MMP(2, 1, 2, 1)

since, in G(σ) relative to the coordinate system with the origin at (4, 5), there are 3

points in quadrant I, 1 point in quadrant II, 2 points in quadrant III, and 2 points

in quadrant IV. Note that if a coordinate in MMP(a, b, c, d) is 0, then there is no

condition imposed on the points in the corresponding quadrant.

In addition, we considered patterns MMP(a, b, c, d) where a, b, c, d ∈ {∅}∪{0}∪N.

Here when a coordinate of MMP(a, b, c, d) is the empty set, then for σi to match

MMP(a, b, c, d) in σ = σ1 . . . σn ∈ Sn, it must be the case that there are no points in

G(σ) relative to the coordinate system with the origin at (i, σi) in the corresponding

quadrant. For example, if σ = 471569283, the point σ3 = 1 matches the marked

mesh pattern MMP(4, 2, ∅, ∅) since in G(σ) relative to the coordinate system with

the origin at (3, 1), there are 6 points in quadrant I, 2 points in quadrant II, no

points in quadrants III and IV. We let mmp(a,b,c,d)(σ) denote the number of i such

that σi matches MMP(a, b, c, d) in σ.

Note how the (two-dimensional) notation of Úlfarsson [12] for marked mesh pat-

terns corresponds to our (one-line) notation for quadrant marked mesh patterns.

For example,

Given a sequence w = w1 . . . wn of distinct integers, let red(w) be the permutation

found by replacing the i-th smallest integer that appears in σ by i. For example, if

σ = 2754, then red(σ) = 1432. Given a permutation τ = τ1 . . . τj in the symmetric

group Sj , we say that the pattern τ occurs in σ = σ1 . . . σn ∈ Sn provided there exist

1 ≤ i1 < · · · < ij ≤ n such that red(σi1 . . . σij ) = τ . We say that a permutation
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Figure 1: The graph of σ = 471569283.
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MMP(k,0,0,0) = MMP(0,0,k,0) = 

MMP(0,a,b,c) = MMP(0,0,  ,k) = 

k

Figure 2: Úlfarsson notation for quadrant marked mesh patterns.

σ avoids the pattern τ if τ does not occur in σ. Let Sn(τ) denote the set of

permutations in Sn which avoid τ . In the theory of permutation patterns, τ is

called a classical pattern. See [4] for a comprehensive introduction to patterns in

permutations.

It has been a rather popular direction of research in the literature on permu-

tation patterns to study permutations avoiding a 3-letter pattern subject to extra

restrictions (see [4, Subsection 6.1.5]). In [9], we started the study of the generating

functions

Q
(a,b,c,d)
132 (t, x) = 1 +

∑
n≥1

Q
(a,b,c,d)
n,132 (x)tn

where for any a, b, c, d ∈ {∅} ∪ N,

Q
(a,b,c,d)
n,132 (x) =

∑
σ∈Sn(132)

xmmp(a,b,c,d)(σ).

For any a, b, c, d, we will write Q
(a,b,c,d)
n,132 (x)|xk for the coefficient of xk in Q

(a,b,c,d)
n,132 (x).

For any fixed (a, b, c, d), we know that Q
(a,b,c,d)
n,132 (1) is the number of 132-avoiding

permutations in Sn which is the nth Catalan number Cn = 1
n+1

(
2n
n

)
. Thus the

coefficients in the polynomial Q
(a,b,c,d)
n,132 (x) represent a refinement of the nth Catalan

number. It is then a natural question to ask whether (i) we can give explicit formulas
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for the coefficients that appear in Q
(a,b,c,d)
n,132 (x) or (ii) whether such coefficients count

other interesting classes of combinatorial objects. Of course, there is an obvious

answer to question (ii). That is, if one has a bijection from Sn(132) to other classes

of combinatorial objects which are counted by the Catalan numbers such as Dyck

paths or binary trees, then one can use that bijection to give an interpretation of

the pattern MMP(a, b, c, d) in the other setting. We shall see that in many cases,

there are interesting connections with the coefficients that arise in our polynomials

Q
(a,b,c,d)
n,132 (x) and other sets of combinatorial objects that do not just arise by such

bijections.

In particular, it is natural to try to understand Q
(a,b,c,d)
n,132 (0) which equals the

number of σ ∈ Sn(132) that have no occurrences of the pattern MMP(a, b, c, d) as

well as the coefficient of the highest power of x that occurs in Q
(a,b,c,d)
n,132 (x) since

that coefficient equals the number of σ ∈ Sn(132) that have the maximum possible

number of occurrences of the pattern MMP(a, b, c, d). We shall see that in many

cases, Q
(a,b,c,d)
n,132 (x)|x and Q

(a,b,c,d)
n,132 (x)|x2 , the number of σ ∈ Sn(132) with exactly

one occurrence and two occurrences, respectively, of the pattern MMP(a, b, c, d) also

have interesting combinatorics associated with them. There are many more inter-

esting questions of this type that can be pursued, but due to space considerations,

we shall mostly restrict ourselves to trying to understand the four coefficients in

Q
(a,b,c,d)
n,132 (x) described above. We should note, however, that there is a uniform way

to compute generating functions of the form

F
(a,b,c,d)
k (t) =

∑
n≥0

Q
(a,b,c,d)
n,132 (x)|xktn.

That is, F
(a,b,c,d)
k (t) is just the result of setting x = 0 in the generating function

1

k!

∂k

∂xk
Q

(a,b,c,d)
132 (t, x). Due to space considerations, we will not pursue the study of

the functions F
(a,b,c,d)
k (t) for k ≥ 2 in this paper.

There is one obvious symmetry for such generating functions which is induced

by the fact that if σ ∈ Sn(132), then σ−1 ∈ Sn(132). That is, the following lemma

was proved in [9].

Lemma 1. ([9]) For any a, b, c, d ∈ N ∪ {0} ∪ {∅},

Q
(a,b,c,d)
n,132 (x) = Q

(a,d,c,b)
n,132 (x).

In [9], we studied the generating functions Q
(k,0,0,0)
132 (t, x), Q

(0,k,0,0)
132 (t, x), and

Q
(0,0,k,0)
132 (t, x), where k can be either the empty set or a positive integer, as well

as the generating functions Q
(k,0,∅,0)
132 (t, x) and Q

(∅,0,k,0)
132 (t, x). In [10], we studied

Q
(k,0,`,0)
n,132 (t, x), Q

(k,0,0,`)
n,132 (t, x), Q

(0,k,`,0)
n,132 (t, x), and Q

(0,k,0,`)
n,132 (t, x), where k, ` ≥ 1. We

also showed that sequences of the form (Q
(a,b,c,d)
n,132 (x)|xr )n≥s count a variety of com-

binatorial objects that appear in the On-line Encyclopedia of Integer Sequences
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(OEIS) [11]. Thus, our results gave new combinatorial interpretations of certain

classical sequences such as the Fine numbers and the Fibonacci numbers as well as

provided certain sequences that appear in the OEIS with a combinatorial interpre-

tation where none had existed before. Another particular result of our studies in [9]

is enumeration of permutations avoiding simultaneously the patterns 132 and 1234,

while in [10], we made a link to the Pell numbers.

The main goal of this paper is to continue the study of Q
(a,b,c,d)
132 (t, x) and com-

binatorial interpretations of sequences of the form (Q
(a,b,c,d)
n,132 (x)|xr )n≥s in the case

where a, b, c, d ∈ N and at least three of these parameters are non-zero.

Next we list the key results from [9] and [10] which we need in this paper.

Theorem 1. ([9, Theorem 3.1])

Q
(0,0,0,0)
132 (t, x) = C(xt) =

1−
√

1− 4xt

2xt

and, for k ≥ 1,

Q
(k,0,0,0)
132 (t, x) =

1

1− tQ(k−1,0,0,0)
132 (t, x)

.

Hence

Q
(1,0,0,0)
132 (t, 0) =

1

1− t
and, for k ≥ 2,

Q
(k,0,0,0)
132 (t, 0) =

1

1− tQ(k−1,0,0,0)
132 (t, 0)

.

Theorem 2. ([9, Theorem 4.1]) For k ≥ 1,

Q
(0,0,k,0)
132 (t, x) =

1 + (tx− t)(
∑k−1
j=0 Cjt

j)−
√

(1 + (tx− t)(
∑k−1
j=0 Cjt

j))2 − 4tx

2tx

=
2

1 + (tx− t)(
∑k−1
j=0 Cjt

j) +
√

(1 + (tx− t)(
∑k−1
j=0 Cjt

j))2 − 4tx

and

Q
(0,0,k,0)
132 (t, 0) =

1

1− t(C0 + C1t+ · · ·+ Ck−1tk−1)
.

Theorem 3. ([10, Theorem 5]) For all k, ` ≥ 1,

Q
(k,0,`,0)
132 (t, x) =

1

1− tQ(k−1,0,`,0)
132 (t, x)

. (1)
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Theorem 4. ([10, Theorem 11]) For all k, ` ≥ 1,

Q
(k,0,0,`)
132 (t, x) =

C`t
` +

`−1∑
j=0

Cjt
j1− tQ(k−1,0,0,0)

132 (t, x) + t(Q
(k−1,0,0,`−j)
132 (t, x)−

`−j−1∑
s=0

Cst
s))

1− tQ(k−1,0,0,0)
132 (t, x)

. (2)

Theorem 5. ([10, Theorem 14]) For all k, ` ≥ 1,

Q
(0,k,`,0)
132 (t, x) =

Ck−1t
k−1 +

k−2∑
j=0

Cjt
j(1− tQ(0,0,`,0)

132 (t, x) + t(Q
(0,k−i−1,`,0)
132 (t, x)−

k−i−2∑
s=0

Cst
s))

1− tQ(0,0,`,0)
132 (t, x)

.

(3)

Theorem 6. ([10, Theorem 18]) For all k, ` ≥ 1,

Q
(0,k,0,`)
132 (t, x) =

Φk,`(t, x)

1− t
, (4)

where

Φk,`(t, x) =

k+`−1∑
j=0

Cjt
j −

k+`−2∑
j=0

Cjt
j+1+

t

k−2∑
j=0

Cjt
j

(
Q

(0,k−j−1,0,`)
132 (t, x)−

k+`−j−2∑
s=0

Cst
s

)+

t

(
Q

(0,k,0,0)
132 (t, x)−

k−2∑
u=0

Cut
u

)(
Q

(0,0,0,`)
132 (t, x)−

`−1∑
v=0

Cvt
v

)
+

t

`−1∑
j=1

Cjt
j

(
Q

(0,k,0,`−j)
132 (t, x)−

k+`−j−2∑
w=0

Cwt
w

) .

As it was pointed out in [9], avoidance of a marked mesh pattern without quad-

rants containing the empty set can always be expressed in terms of multi-avoidance

of (possibly many) classical patterns. Thus, among our results we will re-derive

several known facts in permutation patterns theory. However, our main goals are

more ambitious aimed at finding distributions in question.
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2. Q
(k,0,m,`)
n,132 (x) = Q

(k,`,m,0)
n,132 (x) where k, `,m ≥ 1

By Lemma 1, we know that Q
(k,0,m,`)
n,132 (x) = Q

(k,`,m,0)
n,132 (x). Thus, we will only con-

sider Q
(k,`,m,0)
n,132 (x) in this section.

Throughout this paper, we shall classify the 132-avoiding permutations σ =

σ1 . . . σn by the position of n in σ. That is, let S
(i)
n (132) denote the set of σ ∈

Sn(132) such that σi = n. Clearly each σ ∈ S(i)
n (132) has the structure pictured

in Figure 3. That is, in the graph of σ, the elements to the left of n, Ai(σ),

have the structure of a 132-avoiding permutation, the elements to the right of n,

Bi(σ), have the structure of a 132-avoiding permutation, and all the elements in

Ai(σ) lie above all the elements in Bi(σ). It is well-known that the number of

132-avoiding permutations in Sn is the Catalan number Cn = 1
n+1

(
2n
n

)
and the

generating function for the Cn’s is given by

C(t) =
∑
n≥0

Cnt
n =

1−
√

1− 4t

2t
=

2

1 +
√

1− 4t
.

A (σ)
i

(σ)B
i

i

n

n1

1

Figure 3: The structure of 132-avoiding permutations.

Suppose that n ≥ `. It is clear that n cannot match the pattern MMP(k, `,m, 0)

for k ≥ 1 in any σ ∈ Sn(132). For 1 ≤ i ≤ n, it is easy to see that as we sum

over all the permutations σ in S
(i)
n (132), our choices for the structure for Ai(σ)

will contribute a factor of Q
(k−1,`,m,0)
i−1,132 (x) to Q

(k,`,m,0)
n,132 (x). Similarly, our choices for

the structure for Bi(σ) will contribute a factor of Q
(k,`−i,m,0)
n−i,132 (x) to Q

(k,`,m,0)
n,132 (x)

if i < ` since σ1 . . . σi will automatically be in the second quadrant relative to the

coordinate system with the origin at (s, σs) for any s > i. However if i ≥ `, then

our choices for the structure for Bi(σ) will contribute a factor of Q
(k,0,m,0)
n−i,132 (x) to

Q
(k,`,m,0)
n,132 (x). It follows that for n ≥ `,

Q
(k,`,m,0)
n,132 (x) =

`−1∑
i=1

Q
(k−1,`,m,0)
i−1,132 (x)Q

(k,`−i,m,0)
n−i,132 (x) +

n∑
i=`

Q
(k−1,`,m,0)
i−1,132 (x)Q

(k,0,m,0)
n−i,132 (x).
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Note that for i < `, Q
(k−1,`,m,0)
i−1,132 (x) = Ci−1. Thus, for n ≥ `,

Q
(k,`,m,0)
n,132 (x) =

`−1∑
i=1

Ci−1Q
(k,`−i,m,0)
n−i,132 (x) +

n∑
i=`

Q
(k−1,`,m,0)
i−1,132 (x)Q

(k,0,m,0)
n−i,132 (x). (5)

Multiplying both sides of (5) by tn and summing for n ≥ `, we see that for

k, ` ≥ 1,

Q
(k,`,m,0)
132 (t, x) =

`−1∑
j=0

Cjt
j +

`−1∑
i=1

Ci−1t
i
∑
u≥`−i

Q
(k,`−i,m,0)
u,132 (x)tu+

t
∑
n≥`

n∑
i=1

Q
(k−1,`,m,0)
i−1,132 (x)ti−1Q

(k,0,m,0)
n−i,132 (x)tn−i

=

`−1∑
j=0

Cjt
j +

`−1∑
i=1

Ci−1t
i(Q

(k,`−i,m,0)
132 (t, x)−

`−i−1∑
j=0

Cjt
j)+

tQ
(k,0,m,0)
132 (t, x)(Q

(k−1,`,m,0)
132 (t, x)−

`−2∑
s=0

Cst
s)

= C`−1t
`−1 + tQ

(k,0,m,0)
132 (t, x)Q

(k−1,`,m,0)
132 (t, x)+

`−2∑
s=0

Cst
s(1 + tQ

(k,`−1−s,m,0)
132 (t, x)− tQ(k,0,m,0)

132 (t, x)− t
`−2−s∑
j=0

Cjt
j).

Thus, we have the following theorem.

Theorem 7.

Q
(k,`,m,0)
132 (t, x) = C`−1t

`−1 + tQ
(k,0,m,0)
132 (t, x)Q

(k−1,`,m,0)
132 (t, x)+

`−2∑
s=0

Cst
s(1 + tQ

(k,`−1−s,m,0)
132 (t, x)− tQ(k,0,m,0)

132 (t, x)− t
`−2−s∑
j=0

Cjt
j). (6)

Note that since we can compute Q
(k,0,m,0)
132 (t, x) by Theorem 3 and Q

(0,`,m,0)
132 (t, x)

by Theorem 5, we can use (6) to compute Q
(k,`,m,0)
132 (t, x) for any k, `,m ≥ 1.

2.1. Explicit formulas for Q
(k,`,m,0)
n,132 (x)|xr

It follows from Theorem 7 that

Q
(k,1,m,0)
132 (t, x) = 1 + tQ

(k,0,m,0)
132 (t, x)Q

(k−1,1,m,0)
132 (t, x) and (7)

Q
(k,2,m,0)
132 (t, x) = 1 + tQ

(k,0,m,0)
132 (t, x)(Q

(k−1,2,m,0)
132 (t, x)− 1) + tQ

(k,1,m,0)
132 (t, x).
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Note that it follows from Theorems 3 and 5 that

Q
(1,1,1,0)
132 (t, 0) =1 + tQ

(1,0,1,0)
132 (t, 0)Q

(0,1,1,0)
132 (t, 0)

=1 + t
1− t
1− 2t

· 1− t
1− 2t

=
1− 3t+ 2t2 + t3

(1− 2t)2
.

Thus, the generating function of the sequence {Q(1,1,1,0)
n,132 (0)}n≥1 is

(
1−t
1−2t

)2
which is

the generating function of the sequence A045623 in the OEIS. The n-th term an of

this sequence has many combinatorial interpretations including the number of 1s in

all partitions of n+ 1 and the number of 132-avoiding permutations of Sn+2 which

contain exactly one occurrence of the pattern 213. We note that for a permutation

σ to avoid the pattern MMP(1, 1, 1, 0), it must simultaneously avoid the patterns

3124, 4123, 1324, and 1423. Thus, the number of permutations σ ∈ Sn(132) which

avoid MMP(1, 1, 1, 0) is the number of permutations in Sn that simultaneously avoid

the patterns 132, 3124, and 4123.

Problem 1. Find simple bijections between the set of permutations σ ∈ Sn(132)

which avoid MMP(1, 1, 1, 0) and the other combinatorial interpretations of the se-

quence A045623 in the OEIS.

Note that it follows from Theorem 3 and our previous results that

Q
(2,1,1,0)
132 (t, 0) =1 + tQ

(2,0,1,0)
132 (t, 0)Q

(1,1,1,0)
132 (t, 0)

=1 + t
1− 2t

1− 3t+ t2
· 1− 3t+ 2t2 + t3

(1− 2t)2

=
1− 4t+ 4t2 + t4

1− 5t+ 7t2 − 2t3
.

The sequence (Q
(2,1,1,0)
n,132 (0))n≥1 is the sequence A142586 in the OIES which has the

generating function 1−3t+2t2+t3

(1−3t+t2)(1−2t) . That is, 1−4t+4t2+t4

1−5t+7t2−2t3−1 = t(1−3t+2t2+t3)
(1−3t+t2)(1−2t) . This

sequence has no listed combinatorial interpretation so we have found a combinatorial

interpretation of this sequence.

Similarly,

Q
(3,1,1,0)
132 (t, 0) =1 + tQ

(3,0,1,0)
132 (t, 0)Q

(2,1,1,0)
132 (t, 0)

=1 + t
1− 3t+ t2

1− 4t+ 3t2
· 1− 4t+ 4t2 + t4

1− 5t+ 7t2 − 2t3

=
1− 5t+ 7t2 − 2t3 + t5

1− 6t+ 11t2 − 6t3
.
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Q
(1,1,2,0)
132 (t, 0) =1 + tQ

(1,0,2,0)
132 (t, 0)Q

(0,1,2,0)
132 (t, 0)

=1 + t
1− t− t2

1− 2t− t2
· 1− t− t2

1− 2t− t2

=
1− 3t+ 3t3 + 3t4 + t5

(1− 2t− t2)2
.

Q
(2,1,2,0)
132 (t, 0) =1 + tQ

(2,0,2,0)
132 (t, 0)Q

(1,1,2,0)
132 (t, 0)

=1 + t
1− 2t− t2

1− 3t+ t3
· 1− 3t+ 3t3 + 3t4 + t5

(1− 2t− t2)2

=
1− 4t+ 2t2 + 4t3 + t4 + 2t5 + t6

(1− 2t− t2)(1− 3t+ t3)
.

Using (7) and Theorem 3, we have computed the following.

Q
(1,1,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (12 + 2x)t4 +

(
28 + 12x+ 2x2

)
t5+(

64 + 48x+ 18x2 + 2x3
)
t6 +

(
144 + 160x+ 97x2 + 26x3 + 2x4

)
t7+(

320 + 480x+ 408x2 + 184x3 + 36x4 + 2x5
)
t8+(

704 + 1344x+ 1479x2 + 958x3 + 327x4 + 48x5 + 2x6
)
t9 + · · · .

Q
(1,1,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5 +

(
102 + 26x+ 4x2

)
t6+(

271 + 120x+ 34x2 + 4x3
)
t7 +

(
714 + 470x+ 200x2 + 42x3 + 4x4

)
t8+(

1868 + 1672x+ 964x2 + 304x3 + 50x4 + 4x5
)
t9 + · · · .

Q
(1,1,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6+(
351 + 68x+ 10x2

)
t7 +

(
1006 + 326x+ 88x2 + 10x3

)
t8+(

2868 + 1364x+ 512x2 + 108x3 + 10x4
)
t9 + · · · .

We can explain the highest and second highest coefficients of x in these series.

That is, we have the following theorem.

Theorem 8.

(i) For all m ≥ 1 and n ≥ 3+m, the highest power of x that occurs in Q
(1,1,m,0)
n,132 (x)

is xn−2−m which appears with a coefficient of 2Cm.

(ii) For n ≥ 5, Q
(1,1,1,0)
n,132 (x)|xn−4 = 6 + 2

(
n−2
2

)
.

(iii) For m ≥ 2 and n ≥ 4 +m, Q
(1,1,m,0)
n,132 (x)|xn−3−m = 2Cm+1 + 8Cm + 4Cm(n−

m− 4).



INTEGERS: 15 (2015) 11

Proof. It is easy to see that for the maximum number of MMP(1, 1,m, 0)-matches

in a σ ∈ Sn(132), the permutation must be of the form (n− 1)τ(m+ 1) . . . (n− 2)n

or nτ(m + 1) . . . (n − 2)(n − 1) where τ ∈ Sm(132). Thus, the highest power of x

occurring in Q
(1,1,m,0)
n,132 (x) is xn−2−m which occurs with a coefficient of 2Cm.

For parts (ii) and (iii), by (5) we have the recursion that

Q
(1,1,m,0)
n,132 (x) =

n∑
i=1

Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x). (8)

We proved in [10, Theorem 15] and [10, Theorem 6] that for n ≥ m + 2 the

highest power of x which occurs in either Q
(0,1,m,0)
n,132 (x) or Q

(1,0,m,0)
n,132 (x) is xn−1−m

and

Q
(0,1,m,0)
n,132 (x)|xn−1−m = Q

(1,0,m,0)
n,132 (x)|xn−1−m = Cm.

It is then easy to check that the highest power of x in Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)

is less than xn−3−m for i = 3, . . . , n− 2.

We also proved in [10, Theorems 9,10, and 15] that

Q
(1,0,1,0)
n,132 (x)|xn−3 =Q

(0,1,1,0)
n,132 (x)|xn−3 = 2 +

(
n− 1

2

)
for n ≥ 4 and

Q
(1,0,m,0)
n,132 (x)|xn−m−2 =Q

(0,1,m,0)
n,132 (x)|xn−m−2

=Cm+1 + Cm + 2Cm(n− 2−m) for n ≥ 3 +m and m ≥ 2.

For m = 1, we are left with 4 cases to consider in the recursion (8).

Case 1. i = 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(1,0,1,0)
n−1,132(x)|xn−4 and

Q
(1,0,1,0)
n−1,132(x)|xn−4 = 2 +

(
n− 2

2

)
for n ≥ 5.

Case 2. i = 2. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(1,0,1,0)
n−2,132(x)|xn−4 and

Q
(1,0,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 3. i = n − 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(0,1,1,0)
n−2,132(x)|xn−4

and

Q
(0,1,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 4. i = n. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−4 = Q

(0,1,1,0)
n−1,132(x)|xn−4 and

Q
(0,1,1,0)
n−1,132(x)|xn−4 = 2 +

(
n− 2

2

)
for n ≥ 5.

Thus, Q
(1,1,1,0)
n,132 (x)|xn−4 = 6 + 2

(
n−2
2

)
for n ≥ 5.
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Next we consider the case when m ≥ 2. Again we have 4 cases.

Case 1. i = 1. We have Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(1,0,m,0)
n−1,132 (x)|xn−3−m ,

and

Q
(1,0,m,0)
n−1,132 (x)|xn−3−` = Cm+1 + 3Cm + 2Cm(n− 4−m) for n ≥ 4 +m.

Case 2. i = 2. We have Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(1,0,m,0)
n−2,132 (x)|xn−3−m ,

and

Q
(1,0,m,0)
n−2,132 (x)|xn−3−m = Cm for n ≥ 4 +m.

Case 3. i = n− 1. Here, Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(0,1,m,0)
n−2,132 (x)|xn−3−m ,

and

Q
(0,1,m,0)
n−2,132 (x)|xn−3−m = Cm for n ≥ 4 +m.

Case 4. i = n. We have Q
(0,1,m,0)
i−1,132 (x)Q

(1,0,m,0)
n−i,132 (x)|xn−3−m = Q

(0,1,m,0)
n−1,132 (x)|xn−3−m ,

and

Q
(0,1,m,0)
n−1,132 (x)|xn−3−m = Cm+1 + 3Cm + 2Cm(n− 4−m) for n ≥ 4 +m.

Thus, for n ≥ 4 +m,

Q
(1,1,m,0)
n,132 (x)|xn−3−m = 2Cm+1 + 8Cm + 4Cm(n− 4−m).

Thus, when m = 2, we obtain that

Q
(1,1,2,0)
n,132 (x)|xn−5 = 26 + 8(n− 6) for n ≥ 6

and, for m = 3, we obtain that

Q
(1,1,3,0)
n,132 (x)|xn−6 = 68 + 20(n− 7)for n ≥ 7

which agrees with our computed series.

One can also find the coefficient of the highest power of x in Q
(k,1,1,0)
n (x) for

k ≥ 2 and Q
(1,`,1,0)
n (x) for ` ≥ 2.

Theorem 9.

(i) For all k ≥ 1 and n ≥ 3+k, the highest power of x that occurs in Q
(k,1,1,0)
n,132 (x)

is xn−2−k which appears with a coefficient of k + 1.

(ii) For all ` ≥ 1 and n ≥ 3 + `, the highest power of x that occurs in Q
(1,`,1,0)
n,132 (x)

is xn−2−` which appears with a coefficient of C`+1.



INTEGERS: 15 (2015) 13

Proof. For (i), it is easy to see that the permutations in Sn(132) which have the

most occurrences of MMP(k, 1, 1, 0) start with n− j for some 0 ≤ j ≤ k followed by

an increasing sequence which will have n−2−k elements matching MMP(k, 1, 1, 0).

For (ii), it is easy to see that the way to construct a permutation σ of Sn(132)

which has the maximum number of occurrences of MMP(1, `, 1, 0) is to start with a

rearrangement τ = τ1 . . . τ`+1 of {n−`, n−`+1, . . . , n} such that red(τ) ∈ S`+1(132)

and then let σ = τ1 . . . τ` 1 2 . . . (n− `− 1)τ`+1, which will have n− 2− ` elements

that match MMP(1, `, 1, 0).

One can also find a formula for the second highest coefficient of x in Q
(k,1,1,0)
n (x)

for any k ≥ 1.

Theorem 10. For any k ≥ 1 and n ≥ 4 + k,

Q
(k,1,1,0)
n,132 (x)|xn−k−3 = 3

(
k + 1

2

)
+ k + 2 + (k + 1)

(
n− k − 1

2

)
. (9)

Proof. We proceed by induction on k. Note that our formula reduces to part (ii) of

Theorem 8 when k = 1.

Thus assume that k > 1 and our formula holds for k − 1. By recursion (5), we

see that

Q
(k,1,1,0)
n,132 (x) =

n∑
i=1

Q
(k−1,1,1,0)
i−1,132 (x)Q

(k,0,1,0)
n−i,132 (x). (10)

From [10, Theorem 6], the highest power of x that can occur in Q
(k,0,1,0)
n,132 (x) is

xn−k−1, which occurs with a coefficient of 1 for n ≥ k+ 3. Similarly, from Theorem

9, we know that the highest power of x that can occur in Q
(k,1,1,0)
n,132 (x) is xn−k−2

which occurs with a coefficient of k+1. One can then easily check that for n ≥ k+4,

there are only four terms on the right-hand side of (10) that can contribute to the

coefficient of Q
(k,1,1,0)
n,132 (x)|xn−k−3 .

Case 1. i = 1. In this case, Q
(k−1,1,1,0)
i−1,132 (x)Q

(k,0,1,0)
n−i,132 (x)|xn−k−3 = Q

(k,0,1,0)
n−1,132(x)|xn−k−3

and by [10, Theorem 9], we know that

Q
(k,0,1,0)
n−1,132(x)|xn−k−3 = 2k +

(
n− 1− k

2

)
for n ≥ k + 4.

Case 2. i = 2. In this case, Q
(k−1,1,1,0)
i−1,132 (x)Q

(k,0,1,0)
n−i,132 (x)|xn−k−3 = Q

(k,0,1,0)
n−2,132(x)|xn−k−3

and by [10, Theorem 6], we know that

Q
(k,0,1,0)
n−2,132(x)|xn−k−3 = 1 for n ≥ k + 4.

Case 3. i = n − 1. Here, Q
(k−1,1,1,0)
i−1,132 (x)Q

(k,0,1,0)
n−i,132 (x)|xn−4 = Q

(k−1,1,1,0)
n−2,132 (x)|xn−k−3 ,

and by Theorem 9, we know that

Q
(k−1,1,1,0)
n−2,132 (x)|xn−k−3 = k for n ≥ k + 4.
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Case 4. i = n. We have Q
(k−1,1,1,0)
i−1,132 (x)Q

(k,0,1,0)
n−i,132 (x)|xn−4 = Q

(k−1,1,1,0)
n−1,132 (x)|xn−k−3 ,

and by induction,

Q
(0,1,1,0)
n−1,132(x)|xn−4 = 3

(
k

2

)
+ (k − 1) + 2 + k

(
n− 1− k

2

)
for n ≥ k + 4.

Summing up these four cases, we find that for n ≥ k + 4,

Q
(k,1,1,0)
n,132 (x)|xn−k−3 = 3

(
k + 1

2

)
+ k + 2 + (k + 1)

(
n− k − 1

2

)
.

For example, for k = 2 and k = 3, we obtain that

Q
(2,1,1,0)
n,132 (x)|xn−5 = 13 + 3

(
n− 3

2

)
for n ≥ 6

and

Q
(3,1,1,0)
n,132 (x)|xn−6 = 23 + 4

(
n− 4

2

)
for n ≥ 7,

which agrees with the expansions of the series for Q
(2,1,1,0)
132 (t, x) and Q

(3,1,1,0)
132 (t, x)

given below.

One can ask whether there is a similar formula for the second highest coefficient

of x in Q
(1,`,1,0)
n,132 (x) as a function of `. We conjecture that it is possible to find such

a formula but it will be more complicated because it is no longer the case that a

fixed number of terms in the recursion (5) contribute to the coefficient of the second

highest power of x that occurs in Q
(1,`,1,0)
n,132 (x). That is, as ` grows, the number of

terms in the recursion (5) that contribute to the coefficient of the second highest

power of x that occurs in Q
(1,`,1,0)
n,132 (x) grows. We can, however, give an explicit

formula in the case where ` = 2.

Theorem 11. For n ≥ 6,

Q
(1,2,1,0)
n,132 (x)|xn−5 = 18 + 5

(
n− 3

2

)
. (11)

Proof. In this case, the recursion (5) becomes

Q
(1,2,1,0)
n,132 (x) = Q

(1,1,1,0)
n−1,132(x) +

n∑
i=2

Q
(0,2,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x). (12)

One can then easily check that for n ≥ 6, there are only five terms on the right-

hand side of (12) that can contribute to the coefficient of Q
(1,2,1,0)
n,132 (x)|xn−5 .

Case 1. In part (ii) of Theorem 8, we proved that

Q
(1,1,1,0)
n−1,132(x)|xn−5 = 6 + 2

(
n− 3

2

)
for n ≥ 6.
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Case 2. i = 2. In this case, Q
(0,2,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−5 = Q

(1,0,1,0)
n−2,132(x)|xn−5 and

by [10, Theorem 9], we know that

Q
(1,0,1,0)
n−2,132(x)|xn−5 = 2 +

(
n− 3

2

)
for n ≥ 6.

Case 3. i = 3. In this case, Q
(0,2,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−5 = 2Q

(1,0,1,0)
n−3,132(x)|xn−5 and

by [10, Theorem 6], we know that

2Q
(1,0,1,0)
n−2,132(x)|xn−5 = 2 for n ≥ 6.

Case 4. i = n − 1. In this case, Q
(0,2,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−5 = Q

(0,2,1,0)
n−2,132(x)|xn−5

and by[10, Theorem 16 (i)], we know that

Q
(0,2,1,0)
n−2,132(x)|xn−5 = 2 for n ≥ 6.

Case 5. i = n. In this case, Q
(0,2,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x)|xn−5 = Q

(0,2,1,0)
n−1,132(x)|xn−5 and

by [10, Theorem 16 (ii)],

Q
(0,2,1,0)
n−1,132(x)|xn−5 = 6 + 2

(
n− 3

2

)
for n ≥ 6.

Thus, for n ≥ 6,

Q
(1,2,1,0)
n,132 (x)|xn−5 = 18 + 5

(
n− 3

2

)
.

The formulas for the series Q
(k,`,m,0)
132 (t, x) become increasingly complicated. For

example, we have computed that

Q
(1,1,1,0)
132 (t, x) = 1 +

4tx2(
−1 + t+ 2x− tx+

√
(1 + t(−1 + x))2 − 4tx

)2 ,

Q
(2,1,1,0)
132 (t, x) = 1 +

t

(
1 + 4tx2(

−1+t+2x−tx+
√

(1+t(−1+x))2−4tx
)2

)
1− 2tx

−1+t+2x−tx+
√

(1+t(−1+x))2−4tx

,

Q
(3,1,1,0)
132 (t, x) = 1 +

t

1 +

t

(
1+ 4tx2

(−1+t+2x−tx+
√

(1+t(−1+x))2−4tx)
2

)
1− 2tx

−1+t+2x−tx+
√

(1+t(−1+x))2−4tx


1− t

1− 2tx

−1+t+2x−tx+
√

(1+t(−1+x))2−4tx

,

Q
(1,1,2,0)
132 (t, x) = 1 +

t(
1− 1+t(1+t)(−1+x)−

√
(1+t(1+t)(−1+x))2−4tx
2x

)2 ,
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Q
(1,1,3,0)
132 (t, x) = 1 +

t(
1− 1+t(1+t+2t2)(−1+x)−

√
(1+t(1+t+2t2)(−1+x))2−4tx
2x

)2 , and

Q
(1,2,1,0)
132 (t, x) = 1 + t−

4t2x2(1− t+ tx− 4x−
√

1 + t2(−1 + x)2 − 2t(1 + x))

(−1 + t+ 2x− tx+
√

1 + t2(−1 + x)2 − 2t(1 + x))3
.

We also have computed the following.

Q
(2,1,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (39 + 3x)t5 +

(
107 + 22x+ 3x2

)
t6+(

290 + 105x+ 31x2 + 3x3
)
t7 +

(
779 + 415x+ 190x2 + 43x3 + 3x4

)
t8+(

2079 + 1477x+ 909x2 + 336x3 + 58x4 + 3x5
)
t9+(

5522 + 4922x+ 3765x2 + 1938x3 + 570x4 + 76x5 + 3x6
)
t10 + · · · .

Q
(3,1,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (128 + 4x) t6+(
390 + 35x+ 4x2

)
t7 +

(
1184 + 195x+ 47x2 + 4x3

)
t8+(

3582 + 888x+ 325x2 + 63x3 + 4x4
)
t9+(

19808 + 3616x+ 1743x2 + 542x3 + 83x4 + 4x5
)
t10 + · · · .

Q
(2,1,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (126 + 6x)t6+(
376 + 47x+ 6x2

)
t7 +

(
1115 + 250x+ 59x2 + 6x3

)
t8+(

3289 + 1110x+ 386x2 + 71x3 + 6x4
)
t9+(

9660 + 4444x+ 2045x2 + 558x3 + 83x4 + 6x5
)
t10 + · · · .

Q
(2,1,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (414 + 15x)t7+(
1293 + 122x+ 15x2

)
t8 +

(
4025 + 670x+ 152x2 + 15x3

)
t9+(

12486 + 3124x+ 989x2 + 182x3 + 15x4
)
t10 + · · · .

Again one can easily explain the highest coefficient in Q
(2,1,m,0)
n,132 (x). That is,

to have the maximum number of MMP(2, 1,m, 0)-matches in a σ ∈ Sn(132), the

permutation must be of the form

(n− 2)τ(m+ 1) . . . (n− 3)(n− 1)n,

(n− 1)τ(m+ 1) . . . (n− 3)(n− 2)n, or

nτ(m+ 1) . . . (n− 3)(n− 2)(n− 1)

where τ ∈ Sm(132). Thus, the highest power of x occurring in Q
(2,1,m,0)
n,132 (x) is

xn−3−m which occurs with a coefficient of 3Cm.
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We have computed the following.

Q
(1,2,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (37 + 5x)t5 +

(
94 + 33x+ 5x2

)
t6+(

232 + 144x+ 48x2 + 5x3
)
t7 +

(
560 + 520x+ 277x2 + 68x3 + 5x4

)
t8+(

1328 + 1680x+ 1248x2 + 508x3 + 93x4 + 5x5
)
t9 + · · · .

Q
(1,2,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6+(
348 + 71x+ 10x2

)
t7 +

(
978 + 351x+ 91x2 + 10x3

)
t8+(

2715 + 1463x+ 563x2 + 111x3 + 10x4
)
t9 + · · · .

Q
(1,2,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (404 + 25x)t7+(
1220 + 185x+ 25x2

)
t8 +

(
3655 + 947x+ 235x2 + 25x3

)
t9 + · · · .

Again, one can easily explain the highest coefficient in Q
(1,2,m,0)
n,132 (x). That is, to

have the maximum number of MMP(1, 2,m, 0)-matches in a σ ∈ Sn(132), one must

be of the form

(n− 2)(n− 1)τ(m+ 1) . . . (n− 3)n,

(n− 1)(n− 2)τ(m+ 1) . . . (n− 3)n,

n(n− 2)τ(m+ 1) . . . (n− 3)(n− 1),

n(n− 1)τ(m+ 1) . . . (n− 3)(n− 2), or

(n− 1)nτ(m+ 1) . . . (n− 3)(n− 2)

where τ ∈ Sm(132). Thus, the highest power of x occurring in Q
(1,2,m,0)
n,132 (x) is

xn−3−m which occurs with a coefficient of 5Cm.

Finally, we have computed the following.

Q
(2,2,1,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (123 + 9x)t6+

(351 + 69x+ 9x2)t7 + (982 + 343x+ 96x2 + 9x3)t8+

(2707 + 1405x+ 609x2 + 132x3 + 9x4)t9 + · · · .

Q
(2,2,2,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (411 + 18x)t7+

(1265 + 147x+ 18x2)t8 + (3852 + 809x+ 183x2 + 18x3)t9+

(11626 + 3704x+ 1229x2 + 219x3 + 18x4)t10 + · · · .

Q
(2,2,3,0)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + (1385 + 45x)t8+

(4436 + 381x+ 45x2)t9 + (14118 + 2162x+ 471x2 + 45x3)t10+

(44670 + 10361x+ 3149x2 + 561x3 + 45x4)t11 + · · · .
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Again, one can easily explain the highest coefficient in Q
(2,2,m,0)
n,132 (x). That is, to

have the maximum number of MMP(2, 2,m, 0)-matches in a σ ∈ Sn(132), one must

be of the form

n(n− 1)τ(m+ 1) . . . (n− 4)(n− 3)(n− 2),

(n− 1)nτ(m+ 1) . . . (n− 4)(n− 3)(n− 2),

n(n− 2)τ(m+ 1) . . . (n− 4)(n− 3)(n− 1),

n(n− 3)τ(m+ 1) . . . (n− 4)(n− 2)(n− 1),

(n− 1)(n− 2)τ(m+ 1) . . . (n− 4)(n− 3)n,

(n− 2)(n− 1)τ(m+ 1) . . . (n− 4)(n− 3)n,

(n− 1)(n− 3)τ(m+ 1) . . . (n− 4)(n− 2)n,

(n− 2)(n− 3)τ(m+ 1) . . . (n− 4)(n− 1)n, or

(n− 3)(n− 2)τ(m+ 1) . . . (n− 4)(n− 1)n

where τ ∈ Sm(132). Thus, the highest power of x occurring in Q
(2,2,m,0)
n,132 (x) is

xn−4−m which occurs with a coefficient of 9Cm.

3. Q
(0,k,`,m)
n,132 (x) where k, `,m ≥ 1

Suppose that k, `,m ≥ 1 and n ≥ k+m. It is clear that n cannot match the pattern

MMP(0, k, `,m) for k, `,m ≥ 1 in any σ ∈ Sn(132). If σ = σ1 . . . σn ∈ Sn(132) and

σi = n, then we have three cases, depending on the value of i.

Case 1. i < k. It is easy to see that as we sum over all the permutations σ in

S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Ci−1

to Q
(0,k,`,m)
n,132 (x) since none of the elements σj for j ≤ k can match MMP(0, k, `,m)

in σ. Similarly, our choices for the structure for Bi(σ) will contribute a factor of

Q
(0,k−i,`,m)
n−i,132 (x) to Q

(0,k,`,m)
n,132 (x) since σ1 . . . σi will automatically be in the second

quadrant relative to the coordinate system with the origin at (s, σs) for any s > i.

Thus, the permutations in Case 1 will contribute

k−1∑
i=1

Ci−1Q
(0,k−i,`,m)
n−i,132 (x)

to Q
(0,k,`,m)
n,132 (x).

Case 2. k ≤ i ≤ n − m. It is easy to see that as we sum over all the per-

mutations σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute

a factor of Q
(0,k,`,0)
i−1,132 (x) to Q

(0,k,`,m)
n,132 (x) since the elements in Bi(σ) will all be in
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the fourth quadrant relative to a coordinate system centered at (r, σr) for r ≤ i in

this case. Similarly, our choices for the structure for Bi(σ) will contribute a factor

of Q
(0,0,`,m)
n−i,132 (x) to Q

(0,k,`,m)
n,132 (x) since σ1 . . . σi will automatically be in the second

quadrant relative to the coordinate system with the origin at (s, σs) for any s > i.

Thus, the permutations in Case 2 will contribute

n−m∑
i=k

Q
(0,k,`,0)
i−1,132 (x)Q

(0,0,`,m)
n−i,132 (x)

to Q
(0,k,`,m)
n,132 (x).

Case 3. i ≥ n−m+ 1. It is easy to see that as we sum over all the permutations

σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of

Q
(0,k,`,m−(n−i))
i−1,132 (x) to Q

(0,k,`,m)
n,132 (x) since the elements in Bi(σ) will all be in the

fourth quadrant relative to a coordinate system centered at (r, σr) for r ≤ i in this

case. Similarly, our choices for the structure for Bi(σ) will contribute a factor of

Cn−i to Q
(0,k,`,m)
n,132 (x) since the elements in Bi(σ) do not have enough elements to

the right to match MMP(0, k, `,m) in σ. Thus, the permutations in Case 3 will

contribute
n∑

i=n−m+1

Q
(0,k,`,m−(n−i))
i−1,132 (x)Cn−i

to Q
(0,k,`,m)
n,132 (x). Hence, for n ≥ k +m,

Q
(0,k,`,m)
n,132 (x) =

k−1∑
i=1

Ci−1Q
(0,k−i,`,m)
n−i,132 (x) +

n−m∑
i=k

Q
(0,k,`,0)
i−1,132 (x)Q

(0,0,`,m)
n−i,132 (x)+

n∑
i=n−m+1

Q
(0,k,`,m−(n−i))
i−1,132 (x)Cn−i. (13)

Multiplying (13) by tn and summing, it is easy to compute that

Q
(0,k,`,m)
132 (t, x) =

k+m−1∑
p=0

Cpt
p+

k−2∑
i=0

Cit
i

(
tQ

(0,k−1−i,`,m)
132 (t, x)− t

k−i+m−2∑
r=0

Crt
r

)
+

t

(
Q

(0,k,`,0)
132 (t, x)−

k−2∑
a=0

Cat
a

)(
Q

(0,0,`,m)
132 (t, x)−

m−1∑
b=0

Cbt
b

)
+

m−1∑
j=0

Cjt
j

(
tQ

(0,k,`,m−j)
132 (t, x)− t

k+m−j−2∑
s=0

Cst
s

)
. (14)
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Note that the j = 0 term in the last sum is tQ
(0,k,`,m)
132 (t, x) − t

∑k+m−2
s=0 Cst

s.

Thus, taking the term tQ
(0,k,`,m)
132 (t, x) over to the other side and combining the

sum −t
∑k+m−2
s=0 Cst

s with the sum
∑k+m−1
p=0 Cpt

p to obtain Ck+m−1t
k+m−1 + (1−

t)
∑k+m−2
p=0 Cpt

p and then dividing both sides by 1− t will yield the following theo-

rem.

Theorem 12.

Q
(0,k,`,m)
132 (t, x) =

k+m−2∑
p=0

Cpt
p +

Ck+m−1t
k+m−1

1− t
+

t

1− t

k−2∑
i=0

Cit
i

(
Q

(0,k−1−i,`,m)
132 (t, x)−

k−i+m−2∑
r=0

Crt
r

)
+

t

1− t

(
Q

(0,k,`,0)
132 (t, x)−

k−2∑
a=0

Cat
a

)(
Q

(0,0,`,m)
132 (t, x)−

m−1∑
b=0

Cbt
b

)
+

t

1− t

m−1∑
j=1

Cjt
j

(
Q

(0,k,`,m−j)
132 (t, x)−

k+m−j−2∑
s=0

Cst
s

)
. (15)

Note that since we can compute Q
(0,k,`,0)
132 (t, x) = Q

(0,0,`,k)
132 (t, x) by Theorem 5,

we can compute Q
(0,k,`,m)
132 (t, x) for all k, `,m ≥ 1.

3.1. Explicit formulas for Q
(0,k,`,m)
n,132 (x)|xr

It follows from Theorem 12 that

Q
(0,1,`,1)
132 (t, x) =1 +

t

1− t
+

t

1− t
Q

(0,1,`,0)
132 (t, x)(Q

(0,0,`,1)
132 (t, x)− 1)

=
1

1− t
+

t

1− t
Q

(0,1,`,0)
132 (t, x)(Q

(0,0,`,1)
132 (t, x)− 1),

Q
(0,1,`,2)
132 (t, x) =1 + t+

2t2

1− t
+

t

1− t
Q

(0,1,`,0)
132 (t, x)(Q

(0,0,`,2)
132 (t, x)− (1 + t))+

t2

1− t
(Q

(0,1,`,1)
132 (t, x)− 1), and

Q
(0,2,`,2)
132 (t, x) =1 + t+ 2t2 +

5t3

1− t
+

t

1− t
(Q

(0,1,`,2)
132 (t, x)− (1 + t+ 2t2))+

t

1− t
(Q

(0,2,`,0)
132 (t, x)− 1)(Q

(0,0,`,2)
132 (t, x)− (1 + t))+

t2

1− t
(Q

(0,2,`,1)
132 (t, x)− (1 + t)).
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Again the formula for Q
(0,k,`,m)
132 (t, x) quickly become quite complicated. For

example,

Q
(0,1,1,1)
132 (t, x) =

1 +
2tx
(
1−t+tx−

√
(1+t(−1+x))2−4tx

)
(
−1+t+2x−tx+

√
(1+t(−1+x))2−4tx

)2

1− t
,

Q
(0,1,2,1)
132 (t, x) =

1 +
2tx
(
1−t−t2+tx+t2x−

√
(1+t(1+t)(−1+x))2−4tx

)
(
−1+t+t2+2x−tx−t2x+

√
(1+t(1+t)(−1+x))2−4tx

)2

1− t
, and

Q
(0,1,3,1)
132 (t, x) =

1 +

t

−1+ 1

1−
1+t(1+t+2t2)(−1+x)−

√
(1+t(1+t+2t2)(−1+x))2−4tx

2x


1−

1+t(1+t+2t2)(−1+x)−
√

(1+t(1+t+2t2)(−1+x))2−4tx

2x

1− t
.

We used these formulas to compute the following.

Q
(0,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + (13 + x)t4 + (33 + 8x+ x2)t5+

(81 + 39x+ 11x2 + x3)t6 + (193 + 150x+ 70x2 + 15x3 + x4)t7+

(449 + 501x+ 337x2 + 122x3 + 20x4 + x5)t8+

(1025 + 1524x+ 1363x2 + 719x3 + 204x4 + 26x5 + x6)t9+

(2305 + 4339x+ 4891x2 + 3450x3 + 1450x4 + 327x5 + 33x6 + x7)t10 + · · · .

Q
(0,1,2,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 2(20 + x)t5 + (113 + 17x+ 2x2)t6+

(314 + 92x+ 21x2 + 2x3)t7 + (859 + 404x+ 140x2 + 25x3 + 2x4)t8+

(2319 + 1567x+ 745x2 + 200x3 + 29x4 + 2x5)t9+

(6192 + 5597x+ 3438x2 + 1262x3 + 272x4 + 33x5 + 2x6)t10 + · · · .

Q
(0,1,3,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (127 + 5x)t6+

(380 + 44x+ 5x2)t7 + (1125 + 246x+ 54x2 + 5x3)t8+

(3299 + 1135x+ 359x2 + 64x3 + 5x4)t9+

(9592 + 4691x+ 1942x2 + 492x3 + 74x4 + 5x5)t10 + · · · .

Our next theorem will explain the coefficient of the highest and second highest

powers of x that appear in Q
(0,1,`,1)
n,132 (x) in these series.

Theorem 13.

(i) For n ≥ 1 + k + ` + m, the highest power of x that occurs in Q
(0,k,`,m)
n,132 (x) is

xn−k−`−m which appears with a coefficient of CkC`Cm.
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(ii) For n ≥ 5, Q
(0,1,1,1)
n,132 (x)|xn−4 = 5 +

(
n−2
2

)
.

(iii) For all ` ≥ 2 and n ≥ 4+ `, Q
(0,1,`,1)
n,132 (x)|xn−3−` = C`+1 +6C`+2C`(n−4− `).

Proof. It is easy to see that the maximum number of matches of MMP(0, k, `,m)

that are possible in a 132-avoiding permutation is a permutation of the form αβγδ

where α is a rearrangement of {n− k+ 1, . . . , n} such that red(α) ∈ Sk(132), β is a

rearrangement of {m+ 1, . . . ,m+ `} such that red(β) ∈ S`(132), γ is the increasing

sequence m+ `+ 1,m+ `+ 2, . . . , n− k, and δ ∈ Sm(132). Thus, the highest power

in Q
(0,k,`,m)
n is xn−k−`−m which has a coefficient of CkC`Cm.

For parts (ii) and (iii), we note that it follows from (13) that

Q
(0,1,`,1)
n,132 (x) = Q

(0,1,`,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x).

We proved in [10, Theorems 6 and 15] that the highest power of x that appears in

Q
(0,1,`,0)
n,132 (x) = Q

(0,0,`,1)
n,132 (x) is xn−`−1 which appears with a coefficient of C` for n ≥

`+2. This implies that the highest power of x appearing in Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)

is less than xn−`−3 for i = 3, . . . , n− 2.

Hence we have four cases to consider when we are computing Q
(0,1,1,1)
n,132 (x)|xn−4 .

Case 1. i = 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x)|xn−4 = Q

(0,0,1,1)
n−1,132(x)|xn−4 and

we proved in [10, Theorems 9 and 15] that

Q
(0,0,1,1)
n−1,132(x)|xn−4 = Q

(0,1,1,0)
n−1,132(x)|xn−4 = 2 +

(
n− 2

2

)
for n ≥ 5.

Case 2. i = 2. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x)|xn−4 = Q

(0,0,1,1)
n−2,132(x)|xn−4 and

we proved in [10, Theorems 6 and 15] that

Q
(0,0,1,1)
n−2,132(x)|xn−4 = Q

(0,1,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 3. i = n − 1. In this case, Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x)|xn−4 = Q

(0,1,1,0)
n−2,132(x)|xn−4

and we proved in [10, Theorems 6 and 15] that

Q
(0,1,1,0)
n−2,132(x)|xn−4 = 1 for n ≥ 5.

Case 4. Q
(0,1,1,1)
n−1,132(x)|xn−4 . By part (i), we know that Q

(0,1,1,1)
n−1,132(x)|xn−4 = 1 for n ≥

5.

Thus, Q
(0,1,1,1)
n,132 (x)|xn−4 = 5 +

(
n−2
2

)
for n ≥ 5.

Again there are four cases to consider when computing Q
(0,1,`,1)
n,132 (x)|xn−3−` for

` ≥ 2.
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Case 1. i = 1. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)|xn−3−` = Q

(0,0,`,1)
n−1,132(x)|xn−3−`

and we proved in [10, Theorems 10 and 15] that

Q
(0,0,`,1)
n−1,132(x)|xn−3−` =Q

(0,1,`,0)
n−1,132(x)|xn−3−`

=C`+1 + 3C` + 2C`(n− 4− `) for n ≥ 4 + `.

Case 2. i = 2. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)|xn−3−` = Q

(0,0,`,1)
n−2,132(x)|xn−3−`

and we proved in [10, Theorems 6 and 15] that

Q
(0,0,`,1)
n−2,132(x)|xn−3−` = Q

(0,1,`,0)
n−2,132(x)|xn−3−` = C` for n ≥ 4 + `.

Case 3. i = n−1. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,1)
n−i,132(x)|xn−3−` = Q

(0,1,`,0)
n−2,132(x)|xn−3−`

and we proved in [10, Theorems 6 and 15] that

Q
(0,1,`,0)
n−2,132(x)|xn−3−` = C` for n ≥ 4 + `.

Case 4. Q
(0,1,`,1)
n−1,132(x)|xn−3−` . By part (i), we know that

Q
(0,1,`,1)
n−1,132(x)|xn−3−` = C` for n ≥ 4 + `.

Thus,

Q
(0,1,`,1)
n,132 (x)|xn−3−` = C`+1 + 6C` + 2C`(n− 4− `) for n ≥ 4 + `.

For example, when ` = 2, we have that

Q
(0,1,2,1)
n,132 (x)|xn−5 = 17 + 4(n− 6) for n ≥ 6

and, for ` = 3, we have that

Q
(0,1,3,1)
n,132 (x)|xn−6 = 44 + 10(n− 7) for n ≥ 7,

which agrees with the series we computed.

We can also find the formulas for Q
(0,1,1,1)
n,132 (0) and Q

(0,1,1,1)
n,132 (x)|x.

Theorem 14.

(i) Q
(0,1,1,1)
n,132 (0) = (n− 1)2n−2 + 1 for n ≥ 1.

(ii) Q
(0,1,1,1)
n,132 (x)|x = (n2 − 9n+ 24)2n−3 − 3− n for n ≥ 4.
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Proof. In this case, the recursion (13) becomes

Q
(0,1,1,1)
n,132 (x) = Q

(0,1,1,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,1,0)
i−1,132 (x)Q

(0,0,1,1)
n−i,132 (x).

It was proved in [10, Theorem 15] that Q
(0,1,1,0)
132 (t, x) = Q

(1,0,1,0)
132 (t, x) so that

Q
(0,0,1,1)
n,132 (x) = Q

(0,1,1,0)
n,132 (x) = Q

(1,0,1,0)
n,132 (x) for all n. Thus we have that

Q
(0,1,1,1)
n,132 (x) = Q

(0,1,1,1)
n−1,132(x) +

n−1∑
i=1

Q
(1,0,1,0)
i−1,132 (x)Q

(1,0,1,0)
n−i,132 (x). (16)

By [10, Theorems 7 and 8], we know that Q
(1,0,1,0)
n,132 (0) = 2n−1 for n ≥ 1 and that

Q
(1,0,1,0)
n,132 (x)|x = (n−3)2n−2 +1 for n ≥ 3. Our calculations show that our formulas

hold for n ≤ 5. Then for n ≥ 6, we have by induction that

Q
(0,1,1,1)
n,132 (0) =Q

(0,1,1,1)
n−1,132(0) +Q

(1,0,1,0)
n−1,132(0) +

n−1∑
i=2

Q
(1,0,1,0)
i−1,132 (0)Q

(1,0,1,0)
n−i,132 (0)

=(n− 2)2n−3 + 1 + 2n−2 +

n−1∑
i=2

2i−22n−i−1

=(n− 2)2n−3 + 1 + 2n−2 + (n− 2)2n−3

=(n− 1)2n−2 + 1.

Similarly, if we separate out the i = 1, 2, 3, n − 2, n − 1 terms from the sum in

recursion (16), we find by induction that

Q
(0,1,1,1)
n,132 (x)|x =Q

(0,1,1,1)
n−1,132(x)|x +Q

(1,0,1,0)
n−1,132(x)|x +Q

(1,0,1,0)
n−2,132(x)|x + 2Q

(1,0,1,0)
n−3,132(x)|x+

Q
(1,0,1,0)
n−2,132(x)|x + 2Q

(1,0,1,0)
n−3,132(x)|x+

n−3∑
i=4

Q
(1,0,1,0)
i−1,132 (x)|xQ(1,0,1,0)

n−i,132 (0) +

n−3∑
i=4

Q
(1,0,1,0)
i−1,132 (0)Q

(1,0,1,0)
n−i,132 (x)|x

=((n− 1)2 − 9(n− 1) + 24)2n−4 − 3− (n− 1) + ((n− 4)2n−3 + 1)+

2((n− 5)2n−4 + 1) + 4((n− 6)2n−5 + 1)+

n−3∑
i=4

((i− 4)2i−3 + 1)2n−i−1 +

n−3∑
i=4

2i−2((n− i− 3)2n−i−2 + 1)

=((n− 1)2 − 9(n− 1) + 24)2n−4 − 3− (n− 1) + (6n− 30)2n−4+

7 + 2n−4

(
n−3∑
i=4

(i− 4) +

n−3∑
i=4

(n− i− 3)

)
+

n−3∑
i=4

2n−i−1 +

n−3∑
i=4

2i−2
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=2n−4
(

(n− 1)2 − 9(n− 1) + 24 + 6n− 30 + 2

(
n− 6

2

))
+

− 3− (n− 1) + 7 + 2(2n−4 − 4)

=(n2 − 9n+ 24)2n−3 − 3− n.

The sequence (Q
(0,1,1,1)
n,132 (0))n≥1 starts out 1, 2, 5, 13, 33, 81, 193, 449, . . .. This is

the sequence A005183 in OEIS and it counts the number of permutations of length

n which avoids the patterns 132 and 4312. We obtain the interpretation that this

sequence also counts the number of permutations of length n which avoid the pat-

terns 132 and 4231 (which are precisely the permutations counted by Q
(0,1,1,1)
n,132 (0),

since an occurrence of the pattern MMP(0, 1, 1, 1) in a 132-avoiding permutation

implies an occurrence of the pattern 4231, and vice versa).

Problem 2. Find a bijection between permutations of length n avoiding the patterns

132 and 4312, and permutations of length n avoiding the patterns 132 and 4231.

The sequence (Q
(0,1,1,1)
n,132 (x)|x)n≥4 starts out 1, 8, 39, 150, 501, 1524 . . . is sequence

A055581 which counts the number of directed column-convex polyominoes of area

n+ 5 having along the lower contour exactly 2 reentrant corners.

Problem 3. Find a bijective correspondence between the number of permutations

in Sn(132) which have exactly one occurrence of the pattern MMP(0, 1, 1, 1) and the

polyominoes described in A055581 in the OEIS.

We have computed the following.

Q
(0,1,1,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 2(20 + x)t5 +

(
111 + 19x+ 2x2

)
t6+(

296 + 106x+ 25x2 + 2x3
)
t7 +

(
761 + 456x+ 178x2 + 33x3 + 2x4

)
t8+(

1898 + 1677x+ 947x2 + 295x3 + 43x4 + 2x5
)
t9+(

4619 + 5553x+ 4191x2 + 1901x3 + 475x4 + 55x5 + 2x6
)
t10 + · · · .

Q
(0,1,2,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 4(32 + x)t6+(
385 + 40x+ 4x2

)
t7 +

(
1135 + 243x+ 48x2 + 4x3

)
t8+(

3281 + 117x+ 351x2 + 56x3 + 4x4
)
t9+(

9324 + 4905x+ 2016x2 + 483x3 + 64x4 + 4x5
)
t10 + · · · .
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Q
(0,1,3,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (419 + 10x)t7+(
1317 + 103x+ 10x2

)
t8 +

(
4085 + 644x+ 123x2 + 10x3

)
t9+(

12514 + 3229x+ 900x2 + 143x3 + 10x4
)
t10+(

37913 + 14282x+ 5222x2 + 1196x3 + 163x4 + 10x5
)
t11 + · · · .

Q
(0,2,1,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 4t6(32 + x)+(
380 + 45x+ 4x2

)
t7 +

(
1083 + 286x+ 57x2 + 4x3

)
t8+(

2964 + 1368x+ 453x2 + 73x3 + 4x4
)
t9+(

7831 + 5501x+ 2650x2 + 717x3 + 93x4 + 4x5
)
t10+(

20092 + 19675x+ 12749x2 + 5035x3 + 1114x4 + 117x5 + 4x6
)
t11 + · · · .

Q
(0,2,2,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (421 + 8x)t7+(
1328 + 94x+ 4x2

)
t8 +

(
4103 + 641x+ 110x2 + 8x3

)
t9+(

12401 + 3376x+ 885x2 + 126x3 + 8x4
)
t10+(

36740 + 15235x+ 5484x2 + 1177x3 + 142x4 + 8x5
)
t11+(

106993 + 62012x+ 28872x2 + 8452x3 + 1517x4 + 158x5 + 8x6
)
t12 + · · · .

Q
(0,2,3,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7+

(1410 + 20x)t8 +
(
4601 + 241x+ 20x2

)
t9 +

(
14809 + 1686x+ 281x2 + 20x3

)
t10+(

46990 + 9187x+ 2268x2 + 321x3 + 20x4
)
t11+(

147163 + 43394x+ 14144x2 + 2930x3 + 361x4 + 20x5
)
t12 + · · · .

We can explain the coefficient of the highest power of x in Q
(0,k,`,m)
n,132 (x) for large

enough n.

Theorem 15. For n ≥ ` + k + m + 1, the highest power of x that appears in

Q
(0,k,`,m)
n,132 (x) is xn−k−`−m, which occurs with a coefficient of CkC`Cm.

Proof. It is easy to see the maximum number of matches of MMP (0, k, `,m) for

n > k+`+m that are possible in a 132-avoiding permutation occur in a permutation

of the form αβγ where α is a permutation of n − k + 1, . . . , n such that red(α) ∈
Sk(132), γ ∈ Sm(132), and β is some permutation of k+ 1, k+ 2, . . . , n−m, which

has the maximum number of matches of MMP (0, 0, `, 0). Such a β must be of the

form α(`+a)(`+a+1)(`+a+2) . . . (n−m) where α is a pemutation of k+1, . . . , k+`

such that red(α) ∈ S`(132). Thus the highest power of x that occurs in Q
(0,k,`,m)
n (x)

for n > n− k− `−m is xn−k−`−m which occurs with a coefficient of CkC`Cm. For

example, for n > n− `− 3, the highest power of x in Q
(0,1,`,2)
n,132 (x) is xn−`−3 which
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has a coefficient of 2C` and for n > n− `− 4, the highest power of x in Q
(0,2,`,2)
n,132 (x)

is xn−`−4 which has a coefficient of 4C`. This agrees with our computations.

For sufficiently large n, we can also explain the coefficient of the second highest

term in Q
(0,1,`,2)
n,132 (x).

Theorem 16.

(i) For n ≥ 6, Q
(0,1,1,2)
n,132 (x)|xn−5 = 13 + 2

(
n− 3

2

)
.

(ii) For all ` ≥ 2 and n ≥ 5+`, Q
(0,1,`,2)
n,132 (x)|xn−4−` = 2C`+1+15C`+4C`(n−5−`).

Proof. For (i) and (ii), we note that the recursion for Q
(0,1,`,2)
n,132 (x) is

Q
(0,1,`,2)
n,132 (x) = Q

(0,1,`,2)
n−1,132(x) +Q

(0,1,`,1)
n−2,132(x) +

n−2∑
i=1

Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x).

By [10, Theorems 6 and 15], the highest power of x that occurs in Q
(0,1,`,0)
n,132 (x) is

xn−1−`, and by [10, Theorem 17], the highest power of x that occurs inQ
(0,0,`,2)
n,132 (x) is

n−2−`. It follows that the highest power of x that occurs in Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x)

is less than xn−4−` for i = 3, . . . , n− 3.

Thus, we have to consider five cases when computing Q
(0,1,`,2)
n,132 (x)|xn−4−` .

Case 1. Q
(0,1,`,2)
n−1,132(x)|xn−4−` . By part Theorem 15,

Q
(0,1,`,2)
n−1,132(x)|xn−4−` = 2C` for n ≥ `+ 5.

Case 2. Q
(0,1,`,1)
n−2,132(x)|xn−4−` . We have shown in Theorem 13 that

Q
(0,1,`,1)
n−2,132(x)|xn−4−` = C` for n ≥ `+ 5.

Case 3. i = n − 2. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) equals 2Q

(0,1,`,0)
n−3,132(x). We

have shown in [10, Theorems 6 and 15] that Q
(0,1,`,0)
n−3,132(x)|xn−4−` = C` for n ≥ `+ 5

so that we get a contribution of 2C` in this case.

Case 4. i = 2. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) equals Q

(0,0,`,2)
n−2,132(x). We have

shown in [10, Theorem 17] that

Q
(0,0,`,2)
n−2,132(x)|xn−4−` = 2C` for n ≥ `+ 5.

Case 5. i = 1. In this case, Q
(0,1,`,0)
i−1,132 (x)Q

(0,0,`,2)
n−i,132(x) equals Q

(0,0,`,2)
n−1,132(x). We have

shown in [10, Theorem 17] that for n ≥ `+ 5,

Q
(0,0,`,2)
n−1,132(x)|xn−4−` =

{
6 + 2

(
n−3
2

)
if ` = 1,

2C`+1 + 8C` + 4C`(n− 5− `) if ` ≥ 2.
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Thus, for ` = 1, we get

Q
(0,1,1,2)
n,132 (x)|xn−5 = 13 + 2

(
n− 3

2

)
for n ≥ 6

and, for ` ≥ 2,

Q
(0,1,`,2)
n,132 (x)|xn−4−` = 2C`+1 + 15C` + 4C`(n− 5− `) for n ≥ 5 + `.

For example, when ` = 2, we get

Q
(0,1,2,2)
n,132 (x)|xn−6 = 40 + 8(n− 7) for n ≥ 7

and, for ` = 3, we get

Q
(0,1,3,2)
n,132 (x)|xn−7 = 103 + 20(n− 8) for n ≥ 8,

which agrees with the series that we computed.

4. Q
(`,k,0,m)
n,132 (x) where k, `,m ≥ 1

Suppose that k, `,m ≥ 1 and n ≥ k + m. It is clear that n cannot match

MMP(`, k, 0,m) for k, `,m ≥ 1 in any σ ∈ Sn(132). If σ = σ1 . . . σn ∈ Sn(132)

and σi = n, then we have three cases, depending on the value of i.

Case 1. i < k. It is easy to see that as we sum over all the permutations σ in

S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Ci−1

to Q
(`,k,0,m)
n,132 (x) since the elements in Ai(σ) do not have enough elements to the

left to match MMP(`, k, 0,m) in σ. Similarly, our choices for the structure for

Bi(σ) will contribute a factor of Q
(`,k−i,0,m)
n−i,132 (x) to Q

(`,k,0,m)
n,132 (x) since σ1 . . . σi will

automatically be in the second quadrant relative to the coordinate system with the

origin at (s, σs) for any s > i. Thus, the permutations in Case 1 will contribute

k−1∑
i=1

Ci−1Q
(`,k−i,0,m)
n−i,132 (x)

to Q
(`,k,0,m)
n,132 (x).

Case 2. k ≤ i ≤ n−m. It is easy to see that as we sum over all the permutations

σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of

Q
(`−1,k,0,0)
i−1,132 (x) to Q

(`,k,0,m)
n,132 (x) since the elements in Bi(σ) will all be in the fourth
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quadrant and σi = n is in the first quadrant relative to a coordinate system centered

at (r, σr) for r < i in this case. Similarly, our choices for the structure for Bi(σ) will

contribute a factor of Q
(`,0,0,m)
n−i,132 (x) to Q

(`,k,0,m)
n,132 (x) since σ1 . . . σi will automatically

be in the second quadrant relative to the coordinate system with the origin at (s, σs)

for any s > i. Thus, the permutations in Case 2 will contribute

n−m∑
i=k

Q
(`−1,k,0,0)
i−1,132 (x)Q

(`,0,0,m)
n−i,132 (x)

to Q
(`,k,0,m)
n,132 (x).

Case 3. i ≥ n−m+ 1. It is easy to see that as we sum over all the permutations

σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of

Q
(`−1,k,0,m−(n−i))
i−1,132 (x) to Q

(`,k,0,m)
n,132 (x) since σi = n will be in the first quadrant and

the elements in Bi(σ) will all be in the fourth quadrant relative to a coordinate

system centered at (r, σr) for r < i in this case. Similarly, our choices for the

structure for Bi(σ) will contribute a factor of Cn−i to Q
(`,k,0,m)
n,132 (x) since σj where

j > i does not have enough elements to its right to match MMP(`, k, 0,m) in σ.

Thus, the permutations in Case 3 will contribute

n∑
i=n−m+1

Q
(`−1,k,0,m−(n−i))
i−1,132 (x)Cn−i

to Q
(`,k,0,m)
n,132 (x). Thus, we have the following. For n ≥ k +m,

Q
(`,k,0,m)
n,132 (x) =

k−1∑
i=1

Ci−1Q
(`,k−i,0,m)
n−i,132 (x) +

n−m∑
i=k

Q
(`−1,k,0,0)
i−1,132 (x)Q

(`,0,0,m)
n−i,132 (x)+

n∑
i=n−m+1

Q
(`−1,k,0,m−(n−i))
i−1,132 (x)Cn−i. (17)

Multiplying (17) by tn and summing over n will yield the following theorem.

Theorem 17. For all `, k,m ≥ 1,

Q
(`,k,0,m)
132 (t, x) =

k+m−1∑
p=0

Cpt
p+

t

k−2∑
i=0

Cit
i

(
Q

(`,k−1−i,0,m)
132 (t, x)−

k−i+m−2∑
r=0

Crt
r

)
+

t

(
Q

(`−1,k,0,0)
132 (t, x)−

k−2∑
a=0

Cat
a

)(
Q

(`,0,0,m)
132 (t, x)−

m−1∑
b=0

Cbt
b

)
+
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t

m−1∑
j=0

Cjt
j

(
Q

(`−1,k,0,m−j)
132 (t, x)−

k+m−j−2∑
s=0

Cst
s

)
. (18)

Note that we can compute Q
(`,k,0,0)
132 (t, x) = Q

(`,0,0,k)
132 (t, x) by Theorem 4 so that

(18) allows us to compute Q
(`,k,0,m)
132 (t, x) for any k, `,m ≥ 0.

4.1. Explicit formulas for Q
(`,k,0,m)
n,132 (x)|xr

In general, the formulas for Q
(`,k,0,m)
132 (t, x) are quite complicated. For example, in

the simplest case,

Q
(1,1,0,1)
132 (t, x) =

R(t, x) + S(t, x)
√

1− 4xt

(1− t)(1− 2t+
√

1− 4xt)3

where

R(t, x) =4(1− 3t+ 4t2 − 2t3 − t4 − 3xt+ 6xt2 − 3xt3 + xt4) and

S(t, x) =4(1− 3t+ 4t2 − t4 − xt− xt3 + xt4).

It follows from Theorem 17 that

Q
(`,1,0,1)
132 (t, x) =1 + t+ tQ

(`−1,1,0,0)
132 (t, x)(Q

(`,0,0,1)
132 (t, x)− 1)+

t(Q
(`−1,1,0,1)
132 (t, x)− 1), (19)

Q
(`,1,0,2)
132 (t, x) =1 + t+ 2t2 + tQ

(`−1,1,0,0)
132 (t, x)(Q

(`,0,0,2)
132 (t, x)− (1 + t))+

t(Q
(`−1,1,0,2)
132 (t, x)− (1 + t) + t(Q

(`−1,1,0,1)
132 (t, x)− 1)), and

Q
(`,2,0,2)
132 (t, x) =1 + t+ 2t2 + 5t3 + t(Q

(`,1,0,2)
132 (t, x)− (1 + t+ 2t2))+

t(Q
(`−1,2,0,0)
132 (t, x)− 1)(Q

(`,0,0,2)
132 (t, x)− (1 + t))+

t(Q
(`−1,2,0,2)
132 (t, x)− (1 + t+ 2t2) + t(Q

(`−1,2,0,1)
132 (t, x)− (1 + t))).

One can use these formulas to compute the following.

Q
(1,1,0,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 2(5 + 2x)t4 + (17 + 17x+ 8x2)t5+

(26 + 44x+ 42x2 + 20x3)t6 + (37 + 90x+ 129x2 + 117x3 + 56x4)t7+

(50 + 160x+ 305x2 + 397x3 + 350x4 + 168x5)t8+

(65 + 259x+ 615x2 + 1029x3 + 1268x4 + 1098x5 + 528x6)t9+

(82 + 392x+ 1113x2 + 2259x3 + 3503x4 + 4167x5 + 3564x6 + 1716x7)t10 + · · · .

It is easy to explain the highest coefficient of x in Q
(1,k,0,1)
n,132 (x).
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Theorem 18. For n ≥ 3 + k, the highest power of x that occurs in Q
(1,k,0,1)
n,132 (x) is

xn−2−k which occurs with a coefficient of 2Ck+1Cn−k−2.

Proof. It is easy to see that the maximum number of MMP(1, k, 0, 1) matches occurs

in σ ∈ Sn(132) when σ is of the form α1 . . . αkβαk+11 or α1 . . . αkβ1αk+1 where

α = α1 . . . αk+1 is a rearrangement of {n− k, n− k + 1, . . . , n} such that red(α) ∈
Sk+1(132) and β is a 132-avoiding permutation on 2, . . . , n−k−1. Thus, the highest

power of x in Q
(1,k,0,1)
n,132 (x) for n ≥ k + 3 is xn−2−k which occurs with a coefficient

of 2Ck+1Cn−k−2.

We can also explain the second highest coefficient in Q
(1,1,0,1)
n,132 (x).

Theorem 19. For n ≥ 5,

Q
(1,1,0,1)
n,132 (x)|xn−4 = 8Cn−3 + Cn−4.

Proof. In this case, the recursion for Q
(1,1,0,1)
n,132 (x) is

Q
(1,1,0,1)
n,132 (x) = Q

(0,1,0,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,0,0)
i−1,132 (x)Q

(1,0,0,1)
n−i,132 (x).

It was proved in [9, Theorem 5.1] that for n ≥ 1, the highest power of x that occurs

in Q
(0,1,0,0)
n,132 (x) is xn−1 which occurs with a coefficient of Cn−1. It was proved in

[10, Theorem 12] that for n ≥ 3, the highest power of x that occurs in Q
(1,0,0,1)
n,132 (x)

is xn−2 which occurs with a coefficient of 2Cn−2. It follows that

Q
(1,1,0,1)
n,132 (x)|xn−4 =Q

(0,1,0,1)
n−1,132(x)|xn−4 +Q

(1,0,0,1)
n−1,132(x)|xn−4 +Q

(0,1,0,0)
n−2,132(x)|xn−4+

n−2∑
i=2

Q
(0,1,0,0)
i−1,132 (x)|xi−2Q

(1,0,0,1)
n−i,132 (x)|xn−i−2 .

The following three equations follow from [10, Theorem 19], [10, Theorem 12] and

[9, Theorem 5.1], respectively.

Q
(0,1,0,1)
n−1,132(x)|xn−4 =2Cn−3 + Cn−4 for n ≥ 5,

Q
(1,0,0,1)
n−1,132(x)|xn−4 =3Cn−3 for n ≥ 5, and

Q
(0,1,0,0)
n−2,132(x)|xn−4 =Cn−3 for n ≥ 5.
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Thus, for n ≥ 5,

Q
(1,1,0,1)
n,132 (x)|xn−4 =2Cn−3 + Cn−4 + 3Cn−3 + Cn−3 +

n−2∑
i=2

Ci−2 · 2Cn−i−2

=6Cn−3 + Cn−4 + 2

n−2∑
i=2

Ci−2Cn−i−2

=6Cn−3 + Cn−4 + 2Cn−3

=8Cn−3 + Cn−4.

The sequence (Q
(1,1,0,1)
n,132 (0))n≥1 starts out 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, . . . which

is the sequence A002522 in the OEIS. The n-th element of the sequence has the

formula (n − 1)2 + 1. This can be verified by computing the generating function

Q
(1,1,0,1)
132 (t, 0). That is, we proved in [9] and [10] that

Q
(0,1,0,0)
132 (t, 0) =

1

1− t
,

Q
(1,0,0,1)
132 (t, 0) =

1− 2t+ 2t2

(1− t)3
, and

Q
(0,1,0,1)
132 (t, 0) =

1

1− t
+

t2

(1− t)2
.

Plugging these formulas into (19), one can compute that

Q
(1,1,0,1)
132 (t, 0) =

1− 2t+ 2t2 + t3

(1− t)3
.

It was pointed out to us by the anonymous referee how to prove directly that

Q
(1,1,0,1)
n,132 (0) = (n − 1)2 + 1 for n ≥ 1. It can be shown by an easy case analysis

according to for which i we have σi = n in a 132-avoiding permutation σ1 . . . σn.

For i = n we get permutations avoiding both of the patterns 321 and 132, which

are counted by Q
(0,1,0,1)
n−1,132(0) = 1 +

(
n−1
2

)
by Theorem 21 of [10]. For i < n, we have

only increasing permutation on the left and a concatenation of a decreasing (β) and

an increasing (γ) permutation on the right, where all elements of β are larger than

all elements of γ giving us
∑n−1
i=1 (n− i) =

(
n
2

)
choices. Thus

Q
(1,1,0,1)
n,132 (0) = 1 +

(
n− 1

2

)
+

(
n

2

)
= (n− 1)2 + 1.
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Q
(2,1,0,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (33 + 9x)t5 +

(
71 + 43x+ 18x2

)
t6+(

146 + 137x+ 101x2 + 45x3
)
t7+(

294 + 368x+ 367x2 + 275x3 + 126x4
)
t8+(

587 + 906x+ 1100x2 + 1079x3 + 812x4 + 378x5
)
t9+(

1169 + 2125x+ 2973x2 + 3463x3 + 3352x4 + 2526x5 + 1188x6
)
t10 + · · ·

Q
(3,1,0,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (116 + 16x)t6+(
308 + 89x+ 32x2

)
t7 +

(
807 + 341x+ 202x2 + 80x3

)
t8+(

2108 + 1140x+ 849x2 + 541x3 + 224x4
)
t9+(

5507 + 3583x+ 3046x2 + 2406x3 + 1582x4 + 672x5
)
t10+(

14397 + 10897x+ 10141x2 + 9039x3 + 7310x4 + 4890x5 + 2112x6
)
t11 + · · · .

We have computed that

Q
(2,1,0,1)
132 (t, 0) =

1− 4t+ 6t2 − 3t3 + 2t4 − 4t5 + t6

(1− 2t)(1− t)3
and

Q
(3,1,0,1)
132 (t, 0) =

1− 5t+ 9t2 − 7t3 + 3t4 + 2t5 − 8t6 + 4t7

(1− 3t+ t2)(1− t)3
.

We can find an explicit formula of the coefficient of the highest power of x in

Q
(`,1,0,1)
n,132 (x).

Theorem 20. For n ≥ `+ 3, the highest power or x that occurs in Q
(`,1,0,1)
n,132 (x) is

xn−`−2 which appears with a coefficient of (`+ 1)2Cn−k−2.

Proof. It is easy to see that the maximum number of occurrences of MMP(`, 1, 0, 1)

for a σ ∈ Sn(132) occurs when σ is of the form xτβ where x ∈ {n− `, . . . , n}, β is a

shuffle of 1 with the increasing sequence which results from (n− `)(n− `+ 1) . . . n

by removing x, and τ is a 132-avoiding permutation on 2, . . . , n − ` − 1. Thus we

have ` + 1 choices for x and, once x is chosen, we have ` + 1 choices for β, and

Cn−`−2 choices for τ .

Q
(1,1,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (32 + 10x)t5+(
62 + 50x+ 20x2

)
t6 +

(
107 + 149x+ 123x2 + 50x3

)
t7+(

170 + 345x+ 433x2 + 342x3 + 140x4
)
t8+(

254 + 685x+ 1154x2 + 1327x3 + 1022x4 + 420x5
)
t9+(

362 + 1225x+ 2589x2 + 3868x3 + 4228x4 + 3204x5 + 1320x6
)
t10 + · · · .
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Q
(2,1,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (105 + 27x)t6+(
235 + 140x+ 54x2

)
t7 +

(
494 + 470x+ 331x2 + 135x3

)
t8+(

1004 + 1301x+ 1275x2 + 904x3 + 378x4
)
t9+(

2007 + 3248x+ 3960x2 + 3773x3 + 2674x4 + 1134x5
)
t10 + · · · .

Q
(3,1,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (373 + 56x)t7+(
998 + 320x+ 112x2

)
t8 +

(
2615 + 1233x+ 734x2 + 280x3

)
t9+(

6813 + 4092x+ 3131x2 + 1976x3 + 784x4
)
t10+(

17749 + 12699x+ 11223x2 + 8967x3 + 5796x4 + 2352x5
)
t11 + · · · .

Q
(1,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (107 + 25x)t6+(
233 + 146x+ 50x2

)
t7 +

(
450 + 498x+ 357x2 + 125x3

)
t8+(

794 + 1299x+ 1429x2 + 990x3 + 350x4
)
t9+(

1307 + 2869x+ 4263x2 + 4353x3 + 2954x4 + 1050x5
)
t10 + · · · .

Q
(2,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (348 + 81x)t7+(
811 + 457x+ 162x2

)
t8 +

(
1747 + 1625x+ 1085x2 + 405x3

)
t9+(

3587 + 4663x+ 4443x2 + 2969x3 + 1134x4
)
t10+(

7167 + 11864x+ 14360x2 + 13201x3 + 8792x4 + 3402x5
)
t11 + · · · .

Q
(3,2,0,2)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7+

(1234 + 196x)t8 + 2
(
1657 + 578x+ 196x2

)
t9+(

8643 + 4497x+ 2676x2 + 980x3
)
t10+(

22345 + 14839x+ 11622x2 + 7236x3 + 2744x4
)
t11 + · · · .

We can explain the highest power of x in Q
(k,`,0,2)
n,132 (x) for ` ∈ {1, 2}. But first we

need to prove the following lemma.

Lemma 2. The number of σ = σ1 . . . σk+2 ∈ Sk+2(132) such that σ3 < · · · < σk+2

is k + 1 +
(
k+2
2

)
.

Proof. Clearly for k = 1, every σ ∈ S3(132) satisfies our condition so that there are

5 = 2 +
(
3
2

)
such permutations. Thus the lemma holds for k = 1. Now assume that

our lemma holds for k. Then we can classify the σ = σ1 . . . σk+3 ∈ Sk+3(132) such

that σ3 < · · · < σk+3 by the position of k + 3. Clearly, we have only three cases to

consider.
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Case 1. σ1 = k + 3. In this case, σ2 . . . σk+3 is a permutation in Sk+2(132) such

that σ3 < · · · < σk+3. There are k + 2 such permutations since in such a situation,

σ2 can be any element from {1, . . . , k + 2}.

Case 2. σ2 = k + 3. In this case σ1 = k + 2 and σ3 . . . σk+3 = 12 . . . (k + 1). Thus

we have one choice in this case.

Case 3. σk+3 = k + 3. In this case σ1 . . . σk+2 is a permutation in Sk+2(132) such

that σ3 < · · · < σk+2. Thus by induction, we have k + 1 +
(
k+2
2

)
choices for σ in

this case.

It follows that we have k + 2 + 1 + k + 1 +
(
k+2
2

)
= (k + 2) +

(
k+3
2

)
choices for

such σ.

Theorem 21.

(i) The highest power of x that occurs in Q
(k,1,0,2)
n,132 (x) is xn−k−3 and

Q
(k,1,0,2)
n,132 (x)|xn−k−3 = (k + 1)

(
k + 1 +

(
k + 2

2

))
Cn−k−3.

(ii) The highest power of x that occurs in Q
(k,2,0,2)
n,132 (x) is xn−k−4 and

Q
(k,2,0,2)
n,132 (x)|xn−k−4 =

(
k + 1 +

(
k + 2

2

))2

Cn−k−4.

Proof. For (i), we see that the maximum number of matches of MMP(k, 1, 0, 2)

occurs in permutations σ ∈ Sn(132) of the form α1βγ where α = α1α2 . . . αk+1 is a

rearrangement of {n−k, . . . , n} such that red(α) ∈ Sk+1(132) and α2 < · · · < αk+1,

β is a rearrangement of {3, . . . , n − k − 1} such that red(β) ∈ Sn−k−3 and γ is a

shuffle of α2 . . . αk+1 with either 12 or 21 that avoids 132. First, we claim that the

number of choices for γ is k+ 1 +
(
k+2
2

)
. That is, if a shuffle of α2 . . . αk+1 and 12 is

to avoid 132, then we cannot have one of the αis lie between 1 and 2. Thus 1 and 2

must form a consecutive sequence in any such shuffle so that we have k+1 choices in

this case since we can either place 12 in front of α2 . . . αk+1 or immediately after any

αi for i = 2, . . . , k+1. On the other hand, any shuffle of α2 . . . αk+1 and 21 will avoid

132 so that we have
(
k+2
2

)
choices in this case. But clearly we have k+ 1 choices for

α since we have k+ 1 choices for α1. Thus the highest power of x that can occur in

Q
(k,1,0,2)
n,132 (x) is xn−k−3 and Q

(k,1,0,2)
n,132 (x)|xn−k−3 = (k + 1)

(
k + 1 +

(
k+2
2

))
Cn−k−3.

Similarly, for (ii), it is not difficult to see that the maximum number of matches

of MMP(k, 2, 0, 2) occurs in permutations σ ∈ Sn(132) of the form α1α2βγ where

α = α1α2 . . . αk+2 is a rearrangement of {n − k − 1, . . . , n} such that red(α) ∈
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Sk+2(132) and α3 < · · · < αk+2, β is a rearrangement of {3, . . . , n − k − 2} such

that red(β) ∈ Sn−k−4 and γ is a shuffle of α3 . . . αk+2 with either 12 or 21 that

avoids 132. We have shown that the number of choices for γ is k + 1 +
(
k+2
2

)
. The

number of choices for β is Cn−k−4. Thus to complete the proof, we only need to

use Lemma 2.

Problem 4. In general, one can use similar arguments to the ones in Theorem

21 to show that for n ≥ ` + k + m + 1, the highest power of x in Q
(`,k,0,m)
n,132 (x) is

xn−k−`−m which appears with a coefficient of a`,k,mCn−`−k−m for some constant

a`,k,m. Find a formula for a`,k,m.

5. Q
(a,b,c,d)
n,132 (x) where a, b, c, d ≥ 1

Suppose that a, b, c, d ≥ 1 and n ≥ b+d. It is clear that n cannot match the pattern

MMP(a, b, c, d) for a, b, c, d ≥ 1 in any σ ∈ Sn(132). If σ = σ1 . . . σn ∈ Sn(132) and

σi = n, then we have three cases, depending on the value of i.

Case 1. i < b. It is easy to see that as we sum over all the permutations σ in

S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of Ci−1 to

Q
(a,b,c,d)
n,132 (x) since the elements in Ai(σ) do not have enough elements to the left to

match MMP(a, b, c, d) in σ. Similarly, our choices for the structure for Bi(σ) will

contribute a factor of Q
(a,b−i,c,d)
n−i,132 (x) to Q

(a,b,c,d)
n,132 (x) since σ1 . . . σi will automatically

be in the second quadrant relative to the coordinate system with the origin at (s, σs)

for any s > i. Thus, the permutations in Case 1 will contribute

b−1∑
i=1

Ci−1Q
(a,b−i,c,d)
n−i,132 (x)

to Q
(a,b,c,d)
n,132 (x).

Case 2. b ≤ i ≤ n− d. It is easy to see that as we sum over all the permutations

σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of

Q
(a−1,b,c,0)
i−1,132 (x) to Q

(a,b,c,d)
n,132 (x) since the elements in Bi(σ) will all be in the fourth

quadrant and σi = n is in the first quadrant relative to a coordinate system centered

at (r, σr) for r < i in this case. Similarly, our choices for the structure for Bi(σ) will

contribute a factor of Q
(a,0,c,d)
n−i,132 (x) to Q

(a,b,c,d)
n,132 (x) since σ1 . . . σi will automatically

be in the second quadrant relative to the coordinate system with the origin at (s, σs)

for any s > i. Thus, the permutations in Case 2 will contribute

n−d∑
i=b

Q
(a−1,b,c,0)
i−1,132 (x)Q

(a,0,c,d)
n−i,132 (x)
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to Q
(a,b,c,d)
n,132 (x).

Case 3. i ≥ n − d + 1. It is easy to see that as we sum over all the permutations

σ in S
(i)
n (132), our choices for the structure for Ai(σ) will contribute a factor of

Q
(a−1,b,c,d−(n−i))
i−1,132 (x) to Q

(a,b,c,d)
n,132 (x), since σi = n will be in the first quadrant and

the elements in Bi(σ) will all be in the fourth quadrant relative to a coordinate

system centered at (r, σr) for r < i in this case. Similarly, our choices for the

structure for Bi(σ) will contribute a factor of Cn−i to Q
(a,b,c,d)
n,132 (x) since σj , where

j > i, does not have enough elements to its right to match MMP(a, b, c, d) in σ.

Thus, the permutations in Case 3 will contribute

n∑
i=n−d+1

Q
(a−1,b,c,d−(n−i))
i−1,132 (x)Cn−i

to Q
(a,b,c,d)
n,132 (x). Thus, we have the following. For n ≥ b+ d,

Q
(a,b,c,d)
n,132 (x) =

b−1∑
i=1

Ci−1Q
(a,b−i,c,d)
n−i,132 (x) +

n−d∑
i=b

Q
(a−1,b,c,0)
i−1,132 (x)Q

(a,0,c.d)
n−i,132 (x)+

n∑
i=n−d+1

Q
(a−1,b,c,d−(n−i))
i−1,132 (x)Cn−i. (20)

Multiplying (20) by tn and summing, we obtain the following theorem.

Theorem 22. For all a, b, c, d ≥ 1,

Q
(a,b,c,d)
132 (t, x) =

b+d−1∑
p=0

Cpt
p+

t

b−2∑
i=0

Cit
i

(
Q

(a,b−1−i,c,d)
132 (t, x)−

b−i+d−2∑
r=0

Crt
r

)
+

t

(
Q

(a−1,b,c,0)
132 (t, x)−

b−2∑
i=0

Cit
i

)Q(a,0,c,d)
132 (t, x)−

d−1∑
j=0

Cjt
j

+

t

d−1∑
j=0

Cjt
j

(
Q

(a−1,b,c,d−j)
132 (t, x)−

b+d−j−2∑
s=0

Cst
s

)
. (21)

Thus, for example,

Q
(1,1,1,1)
132 (t, x) =1 + t+ tQ

(0,1,1,0)
132 (t, x)

(
Q

(1,0,1,1)
132 (t, x)− 1

)
+

t(Q
(0,1,1,1)
132 (t, x)− 1),
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and, for k ≥ 2,

Q
(k,1,1,1)
132 (t, x) =1 + t+ tQ

(k−1,1,1,0)
132 (t, x)

(
Q

(k,0,1,1)
132 (t, x)− 1

)
+

t(Q
(k−1,1,1,1)
132 (t, x)− 1).

Again the formulas for Q
(k,1,1,1)
132 (t, x) are quite complex. For example,

Q
(1,1,1,1)
132 (t, x) =

1 + t+
8t2x3(

−1 + t+ 2x− tx+
√

(1 + t(−1 + x))2 − 4tx
)3 +

t

−1 +
1

1− t
−

2tx
(

1− t+ tx−
√

(1 + t(−1 + x))2 − 4tx
)

(−1 + t)
(
−1 + t+ 2x− tx+

√
(1 + t(−1 + x))2 − 4tx

)2
 .

Nevertheless, we can use the recursion above to compute the following.

Q
(1,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + (38 + 4x)t5+(
99 + 29x+ 4x2

)
t6 +

(
249 + 135x+ 41x2 + 4x3

)
t7+(

609 + 510x+ 250x2 + 57x3 + 4x4
)
t8+(

1457 + 1701x+ 1177x2 + 446x3 + 77x4 + 4x5
)
t9+(

3425 + 5220x+ 4723x2 + 2564x3 + 759x4 + 101x5 + 4x6
)
t10 + · · · .

Q
(2,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + (123 + 9x)t6+(
350 + 70x+ 9x2

)
t7 +

(
974 + 350x+ 97x2 + 9x3

)
t8+(

2667 + 1433x+ 620x2 + 133x3 + 9x4
)
t9+(

7218 + 5235x+ 3079x2 + 1077x3 + 178x4 + 9x5
)
t10 + · · · .

Q
(3,1,1,1)
132 (t, x) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (413 + 16x)t7+(
1277 + 137x+ 16x2

)
t8 +

(
3909 + 752x+ 185x2 + 16x3

)
t9+(

11881 + 3383x+ 1267x2 + 249x3 + 16x4
)
t10 + · · · .

It is easy to explain the coefficient of the highest power term that appears in

Q
(k,1,1,1)
n,132 (x) for k ≥ 1. That is, the maximum number of matches of MMP(k, 1, 1, 1)

for σ ∈ Sn(132) is when σ is of the form x α β where x ∈ {n − k, . . . , n}, β
is a shuffle of 1 with the sequence (n − k)(n − k + 1) . . . n with x removed, and

α = 23 . . . (n − k − 1). Note that we have k + 1 choices for x and, once we have
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chosen x, we have k + 1 choices for β. Thus, the highest power of x that occurs in

Q
(k,1,1,1)
n,132 (x) is xn−k−3 which occurs with a coefficient of (k + 1)2 for n ≥ k + 4.

We also have

Q
(0,1,1,0)
132 (t, 0) =

1− t
1− 2t

,

Q
(1,0,1,1)
132 (t, 0) =1 + t

(
1− t
1− 2t

)2

, and

Q
(0,1,1,1)
132 (t, 0) =

1− 4t+ 5t2 − t3

(1− 2t)2(1− t)
,

to compute that

Q
(1,1,1,1)
132 (t, 0) =

1− 6t+ 13t2 − 11t3 + 3t4 − 2t5 + t6

(1− t)(1− 2t)3
.

Note that Q
(1,1,1,1)
132 (t, 0) is the generating function of the permutations that avoid

the patterns from the set {132, 52314, 52341, 42315, 42351}.
Finally, we can also determine the second highest coefficient of x in Q

(1,1,1,1)
n,132 (x).

Theorem 23. For all n ≥ 6,

Q
(1,1,1,1)
n,132 (x)|xn−5 = 17 + 4

(
n− 3

2

)
.

Proof. The recursion of Q
(1,1,1,1)
n,132 (x) is

Q
(1,1,1,1)
n,132 (x) = Q

(0,1,1,1)
n−1,132(x) +

n−1∑
i=1

Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,1)
n−i,132 (x).

For n ≥ 3, the highest power of x which occurs in Q
(0,1,1,0)
n,132 (x) is xn−2 and for

n ≥ 4, the highest power of x that occurs in Q
(1,0,1,1)
n,132 (x) is xn−3. It follows that

for i = 3, . . . , n − 3, the highest power of x that occurs in Q
(0,1,1,0)
i−1,132 (x)Q

(1,0,1,1)
n−i,132 (x)

is xn−6. It follows that

Q
(1,1,1,1)
n,132 (x)|xn−5 =Q

(1,0,1,1)
n−1,132(x)|xn−5 +Q

(1,0,1,1)
n−2,132(x)|xn−5 + 2Q

(0,1,1,0)
n−3,132(x)|xn−5+

Q
(0,1,1,0)
n−2,132(x)|xn−5 +Q

(0,1,1,1)
n−1,132(x)|xn−5 .
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But for n ≥ 6, we have proved that

Q
(1,0,1,1)
n−1,132(x)|xn−5 =6 + 2

(
n− 3

2

)
(by Theorem 8),

Q
(1,0,1,1)
n−2,132(x)|xn−5 =2 (by Theorem 8),

2Q
(0,1,1,0)
n−3,132(x)|xn−5 =2C1 = 2 (by [10, Theorem 15]),

Q
(0,1,1,0)
n−2,132(x)|xn−5 =2 +

(
n− 3

2

)
(by [10, Theorem 15]), and

Q
(0,1,1,1)
n−1,132(x)|xn−5 =5 +

(
n− 3

2

)
(by Theorem 13).

Thus, Q
(1,1,1,1)
n,132 (x)|xn−5 = 17 + 4

(
n−3
2

)
.
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