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Abstract 
 
Modelling of the cardiovascular system is challenging but it has the potential to further advance our 
understanding of normal and pathological conditions. Morphology and function are closely related. 
The arterial system provides steady blood flow to each organ and damps out wave fluctuations as a 
consequence of intermittent ventricular ejection. These actions can be approached separately in 
terms of mathematical relationships between pressure and flow. Lumped parameter models are 
helpful for the study of the interactions between the heart and the arterial system. The arterial 
windkessel model still plays a significant role despite its limitations. This review aims to discuss the 
model and its modifications and derive the fundamental equations by applying electric circuits theory. 
In addition, its role during LVAD assistance is explored and discussed in relation to rotary blood 
pumps. 
 
Introduction 
 
The cardiovascular system is a dynamical closed loop driven by the heart, which is a sophisticated 
volume displacement pump. 
Blood flow in the cardiovascular system behaves according to the laws of mass, momentum and 
energy conservation which are described by governing equations. Blood vessels are flexible and their 
constitutive equations require additional constraints that significantly influence blood flow dynamics. 
The ability to analyze pressure and flow wave phenomena in the arterial system as well as local blood 
flow characteristics is important in order to understand the development and progression of 
cardiovascular disorders. Modelling of the cardiovascular system is a way to obtain knowledge of 
pressure and flow distributions with a view to diagnosis and treatment plan [1]. 
The study of the cardiovascular system usually is carried out in either the time or the frequency 
domain. A frequency domain approach consists of linearization of the governing equations by 
neglecting the convective acceleration terms. Fourier or Laplace transformations are used to solve the 
simplified equations. Frequency domain analysis is an effective solution method but suitable for the 
analysis of systems where periodic motion occurs. A time domain approach is appropriate when non 
linear terms cannot be overlooked. Lumped- and distributed-parameter models are used for this 
purpose. 
Lumped-parameter or zero-dimensional (0-D) models assume a uniform distribution of pressure, flow 
and volume within any particular compartment at any instant in time. 0-D models consist of a set of 
simultaneous ordinary differential equations (ODEs) representing the major components of the 
system such as the heart, valves and compartments of the vasculature. They are suitable for the 
analysis of global distributions of pressure, flow and volume over a range of physiological conditions, 
including the interactions between the components [2]. 
Distributed-parameter or higher dimensional models recognize the variation of pressure, flow and 
volume in space. They break up the arterial system in small segments whose geometry and 
mechanical properties are known. The wave-transmission properties of each arterial segment can be 
described using the oscillatory flow or electrical transmission line theory [3]. 
Distributed-parameter models consist of a set of partial differential equations: the Navier-Stokes 
equations. One-dimensional (1-D) models represent the effects of pulse wave transmission within the 
vasculature. Two-dimensional (2-D) models represent the radial variation of velocity in an axi-
symmetric tube. Three-dimensional (3-D) models are applicable to the study of local flow fields where 
fluid phenomena are complex such as near a bifurcation, within an aneurysm or in the proximity of a 
heart valve. 3-D models can give wall shear stress or vorticity fields but they are computationally more 
demanding and sensitive to boundary conditions. They involve a computational fluid dynamics (CFD) 
approach including fluid-structure interactions between blood and the arterial wall [4]. 
 Combinations of models or multiscale models can be used such as 1-D models of the entire arterial 
system with 0-D models at the distal ends to provide realistic local boundary conditions for 3-D CFD 
simulations [5-7]. 
Model validation is critical in order to evaluate the accuracy of the assumptions by comparison with 
experimental and simulated data [8]. 
The arterial windkessel is a lumped parameter model that has been studied extensively and applied to 
the cardiovascular system. The aim is to discuss the model and its modifications, derive the 
fundamental equations by applying electric circuits theory and discuss its role in modelling the 
interactions between left ventricular assist devices (LVADs) and the cardiovascular system. 
 
 



The Arterial Windkessel Model 

The Windkessel (WK) lumped-parameter model consists of differential equations relating the 
dynamics of aortic pressure and blood flow to arterial compliance and resistance to blood flow.  
The model assumes arteries to operate like the air-chamber in an old-fashioned hand-pumped fire 
engine, which smooths water pulses into continuous flow.  
The WK model describes the whole arterial system in terms of pressure-flow relations at its inlet and 
outlet. Events that take place inside the arterial tree such as wave travel and wave reflection cannot 
be studied. Blood flow distribution and its changes cannot be represented. Effects of local vascular 
changes are not taken into account.  
Despite its limitations, the WK model is easier to solve as hydraulic load on isolated hearts or assist 
devices in comparison with distributed models [9-13]. Also, it is an easy model to use when studying 
ventricular interactions and ventriculo-arterial coupling [14]. Finally, the WK model is suitable for the 
modelling of the systemic and pulmonary arterial systems [15].  
A lumped parameter model is based on differential equations expressed in terms of hydraulic or 
electrical networks making it suitable to study heart failure and ventricular unloading by an assist 
device [16-19]. The analogy with electric circuits facilitates the formulation of the necessary equations 
as shown in Table 1. 
 
Table 1 

Hydraulic Electric 

Pressure (P) Voltage (V) 

Flow (Q) Current (i) 

Blood viscosity Resistance (R) 

Blood inertia Inductance (L) 

Wall compliance Capacitance (C) 

 
An artery can be modelled as a simple compliant tube with the assumption that its axis is rectilinear 
and coincident with the x axis. In the presence of laminar flow, the above parameters can be 
combined and approximated by linear relations as follows: 
 
𝑃 =  𝑄 ∙ 𝑅 (Ohm’s Law) 
 

𝑄 = 𝐶
𝑑𝑃

𝑑𝑡
  

 

𝑃 = 𝐿
𝑑𝑄

𝑑𝑡
 

 
Valves are represented as follows: 
 

𝑄 = {
0             𝑖𝑓 𝑃 < 𝑃∗

𝑃/𝑅        𝑖𝑓 𝑃 ≥  𝑃∗} 

 
Where 𝑃∗ is the critical pressure that needs to be overcome for the blood to flow in a preferential 
direction. 
Kirchhoff's laws can be applied when the cardiovascular system is modelled with electrical circuits. 
The first law states that the sum of currents entering any junction is equal to the sum of currents 
leaving that junction in agreement with the conservation of blood mass. In mathematical terms, we 
have: 
 
∑ 𝐼𝑛

𝑛=∞
𝑛=0  = 0 

 
The second law states that the sum of all voltages around a loop is equal to zero in agreement with 
the fact that pressure is a potential difference. In mathematical terms, we have: 
 
∑ 𝑉𝑛

𝑛=∞
𝑛=0  = 0 

 
 
 
 



The 2-Element Windkessel Model 
 
The 2-element Windkessel (2-E WK) model consists of an electrical circuit with a capacitor 𝐶 as the 
arterial compliance and a resistor 𝑅 as the peripheral resistance [20]. According to this model, the 
load on the heart is a combination of peripheral resistance and total arterial compliance. The 2-E WK 
predicts an exponential decay in diastolic pressure but the systolic relation between pressure and flow 
is poorly predicted [15]. 
If 𝑃𝑎 is the aortic blood pressure and 𝑄𝑎 is the aortic blood flow, applying Kirchhoff’s current law (KCL) 
to the circuit in Figure 1 we obtain the following differential equation: 
 

𝑄𝑎 = 𝑄 + 
𝑃

𝑅
          (1) 

 

But: 𝑄 = 𝐶
𝑑𝑃

𝑑𝑡
           (2) 

 
Therefore: 
 

𝑄𝑎 = 𝐶
𝑑𝑃

𝑑𝑡
 + 

𝑃

𝑅
          (3) 

 
Applying Kirchhoff’s voltage law (KVL) to the left mesh of the circuit in Figure 2, we obtain: 
 
𝑃𝑎 - 𝑃 = 0          (4) 
 
With 𝑃𝑎 = 𝑃          (5) 
 
 
Figure 1  
 
 
Substituting (5) in (3) and rearranging, we obtain: 
 
𝑑𝑃𝑎

𝑑𝑡
 + 

𝑃𝑎

𝑅𝐶
 = 

𝑄𝑎

𝐶
          (6) 

 

Our integrating factor is 𝑒∫𝑑𝑡 𝑅𝐶⁄ , then: 
 

𝑒∫𝑑𝑡 𝑅𝐶⁄  
𝑑𝑃𝑎

𝑑𝑡
 + 

𝑃𝑎

𝑅𝐶
 𝑒∫𝑑𝑡 𝑅𝐶⁄  = 

𝑄𝑎

𝐶
 𝑒∫𝑑𝑡 𝑅𝐶⁄   

 

𝑒𝑡 𝑅𝐶⁄  
𝑑𝑃𝑎

𝑑𝑡
 + 

𝑃𝑎

𝑅𝐶
 𝑒𝑡 𝑅𝐶⁄  = 

𝑄𝑎

𝐶
 𝑒𝑡 𝑅𝐶⁄  

 
𝑑(𝑃𝑎𝑒𝑡 𝑅𝐶⁄ )

𝑑𝑡
 = 

𝑄𝑎

𝐶
 𝑒𝑡 𝑅𝐶⁄          (7) 

 
Integrating both sides, we obtain: 
 

∫ 𝑑(𝑃𝑎𝑒𝑡 𝑅𝐶⁄ ) = 
𝑄𝑎

𝐶
 ∫ 𝑒𝑡 𝑅𝐶⁄ 𝑑𝑡 

 

𝑃𝑎𝑒𝑡 𝑅𝐶⁄  = 
𝑄𝑎

𝐶
 𝑅𝐶𝑒𝑡 𝑅𝐶⁄ +  𝐴 

 
Finally: 
 

𝑃𝑎 = 𝑄𝑎𝑅 +  𝐴𝑒−𝑡 𝑅𝐶⁄          (8) 
 
𝐴 is a constant of integration.  
 
During systole, at 𝑡 = 0, 𝑃𝑎 =  𝑃0 leading to: 
 
𝐴 = 𝑃0 −  𝑄𝑎𝑅 



The pressure waveform for the systolic phase becomes: 
 

𝑃𝑎 = 𝑄𝑎𝑅 + (𝑃0 − 𝑄𝑎𝑅) 𝑒−𝑡 𝑅𝐶⁄  
 
Rearranging, we obtain: 
 

𝑃𝑎 = 𝑃0𝑒−𝑡 𝑅𝐶⁄ + 𝑄𝑎𝑅(1 −  𝑒−𝑡 𝑅𝐶⁄ )       (9) 
 
During diastole, there is no inflow and 𝑄𝑎 = 0 at 𝑡 = 0 leading to the following relationship for the 
diastolic phase: 
 

𝑃𝑎 = 𝑃0𝑒−𝑡 𝑅𝐶⁄            (10) 
 
The product 𝜏 = 𝑅𝐶 is the time constant, which is the time for pressure to decrease to 37% of its 
starting value. The larger the resistance, the slower the blood leaves the system leading to a longer 
time constant. In addition, the larger the compliance the more blood is stored leading again to a 
longer time constant. The assumption that all the compliance is located in the aorta introduces a small 
error because the compliance of the smaller vessels is neglected.  
 

The term 
𝑃

𝑅
 in equation (3) is a direct application of Ohm’s law. 

The flow out of a terminal vessel into the microcirculation is given by the following general form: 
 

𝑄 = 
𝑃− 𝑃∞

𝑅
 

 
Where 𝑃∞ is the pressure related to cessation of flow through the microcirculation when arterial 
pressure is greater than venous pressure (waterfall effect). In other words, the vessel collapses when 
the upstream pressure approaches the interstitial pressure. 
The inclusion of 𝑃∞ in Equation (10) can be written in a more general form as follows: 
 

𝑃𝑎 −  𝑃∞ = (𝑃0 −  𝑃∞)𝑒−𝑡 𝑅𝐶⁄  
 
The inclusion of 𝑃∞ allows a better curve fitting of the arterial diastolic pressure measured in the 
human aorta. When 𝑃∞ = 0, the failure of the model to fit the diastolic pressure waveform becomes 
more obvious as diastolic time increases. 
 
The 2-E WK is a simple lumped-parameter model that gives insights into the contribution of the 
different arterial properties to the load on the heart but it is not suitable to reproduce systemic input 
impedance [21]. Computational calculations of input impedance by Fourier analysis of pressure and 
flow signals show the weakness of the 2-E WK model. When aortic blood flow is used as input, the 
model produces unrealistic aortic blood pressure wave shapes due to the poor medium- to high-
frequency representation of the aortic impedance [21, 22]. At high frequencies its input impedance 
modulus reduces to negligible values and its phase angle reaches -90º in contrast to the aortic input 
impedance measured in vivo where its modulus decreases to a plateau value and the phase angle is 
zero degrees [15]. 
 
The 3-Element Windkessel Model 
 
The 3-element windkessel (3-E WK) model overcomes the weakness of the 2-E WK by introducing 
the aortic characteristic impedance 𝑅𝑐, which accounts for the local inertia and local compliance of the 

proximal ascending aorta [23]. 𝑅𝑐 is connected in series with the 2-E WK and can be considered as 
the bridging link between the lumped model and wave travel aspects of the arterial system. Although 
details such as the inflection point and the augmentation in aortic pressure cannot be described, the 
3-E WK model produces realistic pressure and flow wave shapes with significant improvement of the 
medium- to high-frequency behaviour [15, 21, 23, 24].  
The aortic characteristic impedance has constant modulus and phase angle of zero degrees.  
At high frequencies, the input impedance equals the characteristic impedance of the proximal aorta. 
The characteristic impedance is not a resistance although it is represented by a resistor. It is only 
present for oscillatory pressure and flow but it does not dissipate energy like a resistor. Therefore, the 
ratio of mean pressure over mean flow is 𝑅 + 𝑅𝐶. The use of a resistor for the characteristic 



impedance causes errors in the low frequency range of the input impedance [22]. However, the error 
is small considering that the characteristic impedance is 5-7% of the peripheral resistance in the 
mammalian systemic circulation [15, 25]. 
Applying KCL to the circuit in Figure 2, we obtain equations (1) and (3) as before. 
Applying KVL to the left mesh of the circuit in Figure 2, we obtain: 
 
𝑃𝑎 − 𝑅𝑐𝑄𝑎 −  𝑃 = 0         (11) 
 
Where: 
 
𝑃 = 𝑃𝑎 − 𝑅𝑐𝑄𝑎           (12) 
 
Substituting (12) in (3), we obtain: 
 

𝑄𝑎 = 𝐶
𝑑(𝑃𝑎− 𝑅𝐶𝑄𝑎)

𝑑𝑡
 + 

𝑃𝑎− 𝑅𝐶𝑄𝑎

𝑅𝑝
  

 
With 
 

𝑄𝑎 = 𝐶
𝑑𝑃𝑎

𝑑𝑡
− 𝑅𝐶𝐶

𝑑𝑄𝑎

𝑑𝑡
+ 

𝑃𝑎

𝑅𝑝
−  

𝑅𝐶

𝑅𝑝
𝑄𝑎 

 
Rearranging, we obtain: 
 

𝐶
𝑑𝑃𝑎

𝑑𝑡
+ 

𝑃𝑎

𝑅𝑝
 =  𝑅𝐶𝐶

𝑑𝑄𝑎

𝑑𝑡
 + (1 +  

𝑅𝐶

𝑅𝑝
)𝑄𝑎       (13) 

 
 
Figure 2  
 
 
The 3-E WK model has become the most widely used and accepted lumped-parameter model of the 
systemic circulation. It has a limited number of physiologically meaningful parameters which offer 
better insight into arterial function than input impedance [15]. 
Although this model can produce realistic aortic pressures and flows, 𝐶 tends to be overestimated and 

𝑅𝐶 underestimated. Therefore, the model works with parameter values that quantitatively differ from 
the vascular properties [26].  
 
The 4-Element Windkessel Model 
 
The 4-element windkessel (4-E WK) model overcomes the inconsistency resulting from the 
approximation of the characteristic impedance as a resistance by adding an inertial element 𝐿 either 

in series or in parallel with 𝑅𝐶 [26-29]. The inertance term equals the total inertance of the arterial 
system. The advantage is that the model accounts for the inertia of the whole arterial system, 
contributes to the low frequencies only and allows 𝑅𝐶 intervening at medium-to-high frequencies. The 
4-E WK gives a relative accurate estimation of total arterial compliance from pressure and flow. 
 
 
Figure 3  
 
 
When 𝐿 is added in series to 𝑅𝑐, applying KVL to the left mesh of the circuit in Figure 3, we obtain: 
 

𝑃𝑎 − 𝑅𝑐𝑄𝑎 −  𝐿
𝑑𝑄𝑎

𝑑𝑡
−  𝑃 = 0        (14) 

 
Where: 
 

𝑃 = 𝑃𝑎 − 𝑅𝑐𝑄𝑎 −  𝐿
𝑑𝑄𝑎

𝑑𝑡
          (15) 

 
Substituting (15) in (3), we obtain: 



𝑄𝑎 = 𝐶
𝑑

𝑑𝑡
(𝑃𝑎 − 𝑅𝑐𝑄𝑎 −  𝐿

𝑑𝑄𝑎

𝑑𝑡
) +  

1

𝑅𝑝
(𝑃𝑎 − 𝑅𝑐𝑄𝑎 −  𝐿

𝑑𝑄𝑎

𝑑𝑡
) 

 
And 
 

𝑄𝑎 = 𝐶
𝑑𝑃𝑎

𝑑𝑡
− 𝑅𝐶𝐶

𝑑𝑄𝑎

𝑑𝑡
−  𝐿𝐶

𝑑²𝑄𝑎

𝑑𝑡²
+  

𝑃𝑎

𝑅𝑝
− 

𝑅𝐶

𝑅𝑝
𝑄𝑎 −  

𝐿

𝑅𝑝

𝑑𝑄𝑎

𝑑𝑡
    

 
Rearranging, we obtain the ODE for the circuit in Figure 3 as follows: 
 

𝐿𝐶
𝑑²𝑄𝑎

𝑑𝑡²
 + (𝑅𝐶𝐶 +  

𝐿

𝑅𝑝
)

𝑑𝑄𝑎

𝑑𝑡
+ (1 + 

𝑅𝐶

𝑅𝑝
)𝑄𝑎 = 𝐶

𝑑𝑃𝑎

𝑑𝑡
+  

𝑃𝑎

𝑅𝑝
      (16) 

 
When 𝐿 is added in parallel to 𝑅𝑐, the same voltage drop (pressure drop) applies.  
Therefore, we obtain: 
 

𝐿
𝑑𝑄𝐿

𝑑𝑡
 = 𝑃𝑎 −  𝑃   where  𝑃 = 𝑃𝑎 −  𝐿

𝑑𝑄𝐿

𝑑𝑡
       (17) 

 

𝑄𝑎 − 𝑄𝐿 = 
𝑃𝑎− 𝑃

𝑅𝑐
    where 𝑄𝐿 = 𝑄𝑎 −  

𝑃𝑎

𝑅𝑐
 +  

𝑃

𝑅𝑐
       (18) 

 
Substituting (17) in (3), we obtain: 
 

𝑄𝑎 = 𝐶
𝑑

𝑑𝑡
(𝑃𝑎 −  𝐿

𝑑𝑄𝐿

𝑑𝑡
) + 

1

𝑅𝑝
(𝑃𝑎 −  𝐿

𝑑𝑄𝐿

𝑑𝑡
) 

 
Following calculations and rearranging, we have: 
 

𝐿𝐶
𝑑2𝑄𝐿

𝑑𝑡2 + 
𝐿

𝑅𝑝

𝑑𝑄𝐿

𝑑𝑡
+ 𝑄𝑎 = 𝐶

𝑑𝑃𝑎

𝑑𝑡
+ 

𝑃𝑎

𝑅𝑝
           (19) 

 
Substituting (18) in (19), we have: 
 

𝐿𝐶
𝑑2

𝑑𝑡2 (𝑄𝑎 −  
𝑃𝑎

𝑅𝑐
+  

𝑃

𝑅𝑐
) + 

𝐿

𝑅𝑝

𝑑

𝑑𝑡
(𝑄𝑎 −  

𝑃𝑎

𝑅𝑐
+  

𝑃

𝑅𝑐
) +  𝑄𝑎 = 𝐶

𝑑𝑃𝑎

𝑑𝑡
+ 

𝑃𝑎

𝑅𝑝
  

 
Following calculations and rearranging, we obtain: 
 

𝐿𝐶
𝑑2𝑄𝑎

𝑑𝑡2 +  
𝐿

𝑅𝑝

𝑑𝑄𝑎

𝑑𝑡
+  𝑄𝑎 + 

𝐿

𝑅𝑐
(𝐶

𝑑2𝑃

𝑑𝑡2 + 
1

𝑅𝑝

𝑑𝑃

𝑑𝑡
) = 

𝐿𝐶

𝑅𝑐

𝑑2𝑃𝑎

𝑑𝑡2 + (
𝐿

𝑅𝑐𝑅𝑝
+  𝐶)

𝑑𝑃𝑎

𝑑𝑡
+ 

𝑃𝑎

𝑅𝑝
    (20) 

 
Differentiating (3), we obtain: 
 
𝑑𝑄𝑎

𝑑𝑡
 = 𝐶

𝑑2𝑃

𝑑𝑡2 +  
1

𝑅𝑝

𝑑𝑃

𝑑𝑡
          (21) 

 
Substituting (21) in (20), we obtain: 
 

𝐿𝐶
𝑑2𝑄𝑎

𝑑𝑡2 +  
𝐿

𝑅𝑝

𝑑𝑄𝑎

𝑑𝑡
+  

𝐿

𝑅𝑐

𝑑𝑄𝑎

𝑑𝑡
+  𝑄𝑎 = 

𝐿𝐶

𝑅𝑐

𝑑2𝑃𝑎

𝑑𝑡2 + (
𝐿

𝑅𝑐𝑅𝑝
+  𝐶)

𝑑𝑃𝑎

𝑑𝑡
+  

𝑃𝑎

𝑅𝑝
   

 
Multiplying both sides by 𝑅𝑐𝑅𝑝 and rearranging, we obtain the ODE for the circuit in Figure 4 as 

follows: 
 

𝑅𝑐𝑅𝑝𝐶𝐿
𝑑2𝑄𝑎

𝑑𝑡2  + 𝐿(𝑅𝑐 +  𝑅𝑝)
𝑑𝑄𝑎

𝑑𝑡
 + 𝑅𝑐𝑅𝑝𝑄𝑎 = 𝑅𝑝𝐶𝐿

𝑑2𝑃𝑎

𝑑𝑡2  + (𝐿 + 𝑅𝑐𝑅𝑝𝐶)
𝑑𝑃𝑎

𝑑𝑡
 +  𝑅𝑐𝑃𝑎   (22)  

 
In summary, the characteristic impedance introduces the transmission concept in the WK model 
improving its behaviour at high frequencies. The total arterial inertance improves the behaviour of the 
model at very low frequencies. 
A comparison of the measured aortic input impedance with values predicted by the 2-element, 3-
element and 4-element windkessel model [30] is shown in Figure 5. 



Figure 4  
 
 
Figure 5  
 
 
The Viscoelastic Windkessel Model  
 
  
Figure 6  
 
 
Figure 7  
 
 
The Viscoelastic Windkessel (VW) model consists of total peripheral resistance 𝑅𝑝in parallel with a 

complex and frequency dependent compliance 𝐶𝑐(𝑗𝜔) described by a Voigt cell [31, 32].  
The mechanical configuration of the Voigt cell includes a dashpot with dumping factor 𝐷 in parallel 

with a spring with elastic constant 𝐾 as shown in Figure 6. The electric analogue consists of a resistor 

𝑅𝑑, accounting for viscous losses of wall motion, in series with a capacitor 𝐶𝑉𝑊 representing static 
compliance. 
The VW model considers a viscoelastic rather than an elastic equivalent arterial reservoir in 
comparison with the 2-E WK. A comparative analysis of VW, 2-E and 3-E WK models shows that the 
presence of a complex and frequency dependent compliance in VW improves the interpretation of 
aortic input impedance and resolves conflicting compliance estimation [32]. 
Applying KCL to the circuit in Figure 7, we obtain: 
 

𝑄𝑎 = 𝑄 +  
𝑃

𝑅𝑝
+ 

𝑃

𝑅𝑑
         (23) 

 

But: 𝑄 = 𝐶
𝑑𝑃

𝑑𝑡
  

 
Therefore: 
 

𝑄𝑎 = 𝐶
𝑑𝑃

𝑑𝑡
+  

𝑃

𝑅𝑝
+ 

𝑃

𝑅𝑑
         (24) 

 
Applying KVL to the left mesh of the circuit in Figure 7, we have: 
 
𝑃𝑎 −  𝑃 = 0 
 
With: 𝑃𝑎 = 𝑃          (25) 
 
Substituting (25) in (24) and rearranging, we obtain: 
 

𝐶
𝑑𝑃𝑎

𝑑𝑡
+ (

1

𝑅𝑝
+  

1

𝑅𝑑
) 𝑃𝑎 = 𝑄𝑎        (26) 

 
To avoid conceptual misunderstandings, the Viscoelastic Windkessel (VW) may be better defined as 
Viscoelastic Minimal Model (VEMM) where the hydraulic representation consists of a viscoelastic 
reservoir instead of an air chamber [33]. 
The VEMM may be considered as an alternative 3-E WK to explain the shortcomings of the 2-E WK. 
The static compliance of the 2-E WK explains aortic pressure decay in diastole, where the static 
elastic properties of the arterial wall prevail, but it falls short in systole where a faster deformation of 
the arterial wall occurs in response to pressure. This shortcoming is resolved by the VEMM with the 
introduction of the resistor 𝑅𝑑 in series with compliance in order to develop the viscoelastic response 
that allows the model output to follow the rapid pressure change in systole and its slower decrease in 
diastole [32]. The VEMM applies aortic pressure to both the complex compliance and the total 
peripheral resistance during the entire cardiac cycle. In contrast with the low resistance 𝑅𝑐 of the 3-E 
WK, the low resistance 𝑅𝑑 of the VEMM does not interfere with 𝑅𝑝 and the relation between mean 



aortic pressure and cardiac output but it plays a role in modulating the arterial wall response to 
pulsatility [34, 35].  
The overestimation of static compliance by 3-E WK may be related to elastic energy storage of the 
capacitor during systole in the presence of energy dissipation in the resistor 𝑅𝑐 and discharge of the 

capacitor in diastole through the resistor 𝑅, which is lower than total peripheral resistance 𝑅𝑝. 

Although 3-E WK and VEMM share the same pressure curve morphology, 𝑅𝑐 in 3-E WK appears to 
behave as a viscous element necessary to reproduce the rapid pressure response in systole but its 
placement in series at the 2-E WK entrance causes its action to disappear in diastole, where the 
viscous response remains less effective.   
 
The Inertance Viscoelastic Windkessel Model 

The Inertance Viscoelastic Windkessel (IVW) model can be considered as an alternative 4-E WK 
consisting of an inertial element connected in series with a VW. The IVW model offers an innovative 
way for the interpretation of the resistive effect in terms of viscous properties of vessel wall motion 
[36]. According to a generalized sensitivity function analysis [37], the inductance 𝐿 is suitable to 
represent the inertial properties of blood motion in the W4S and IVW but not in the W4P. In addition, 
the meaning of aortic characteristic impedance given to 𝑅𝑐 has been put into question while 𝑅𝑑 is 
likely to account for viscous losses of arterial wall motion. 
Applying KCL to the circuit in Figure 8, we obtain equations (23) and (24) as before. 
Applying KVL to the left mesh of the circuit in Figure 8, we have: 
 

𝑃𝑎 −  𝐿
𝑑𝑄𝑎

𝑑𝑡
−  𝑃 = 0         (27) 

 

With: 𝑃 =  𝑃𝑎 −  𝐿
𝑑𝑄𝑎

𝑑𝑡
               (28) 

 
Substituting (28) in (24), we have: 
 

𝑄𝑎 = 𝐶
𝑑

𝑑𝑡
(𝑃𝑎 −  𝐿

𝑑𝑄𝑎

𝑑𝑡
) + (𝑃𝑎 −  𝐿

𝑑𝑄𝑎

𝑑𝑡
) (

1

𝑅𝑝
+  

1

𝑅𝑑
) 

 
And 
 

𝑄𝑎 = 𝐶
𝑑𝑃𝑎

𝑑𝑡
−  𝐿𝐶

𝑑²𝑄𝑎

𝑑𝑡²
+ 𝑃𝑎 (

1

𝑅𝑝
+  

1

𝑅𝑑
) −  𝐿 (

1

𝑅𝑝
+  

1

𝑅𝑑
)

𝑑𝑄𝑎

𝑑𝑡
     (29) 

 
Rearranging, we have: 
 

𝐿𝐶
𝑑²𝑄𝑎

𝑑𝑡²
 +  𝐿 (

1

𝑅𝑝
+  

1

𝑅𝑑
)

𝑑𝑄𝑎

𝑑𝑡
 +  𝑄𝑎 = 𝐶

𝑑𝑃𝑎

𝑑𝑡
 +  (

1

𝑅𝑝
+ 

1

𝑅𝑑
) 𝑃𝑎 

 
Multiplying both sides by 𝑅𝑝𝑅𝑑, we obtain the ODE for the circuit in Figure 8 as follows: 

 

𝑅𝑝𝑅𝑑𝐿𝐶
𝑑²𝑄𝑎

𝑑𝑡²
 +  𝐿(𝑅𝑑 + 𝑅𝑝)

𝑑𝑄𝑎

𝑑𝑡
 +  𝑅𝑝𝑅𝑑𝑄𝑎 = 𝑅𝑝𝑅𝑑𝐶

𝑑𝑃𝑎

𝑑𝑡
 + (𝑅𝑑 +  𝑅𝑝)𝑃𝑎   (30) 

 
Again, the Inertance Viscoelastic Windkessel Model (IVW) may be better defined as Inertance 
Viscoelastic Minimal Model (IVEMM) to avoid misunderstandings [33]. IVEMM and W4S share the 
same curve morphology [36] but W4S fails to explain the significant difference observed in the 

development rate of 𝑅𝑐 and 𝑅𝑝 with a rapid reduction of  
𝑅𝑐

𝑅𝑝
⁄  ratio during early vascular 

development [38]. This shortcoming is addressed by IVEMM where the difference observed in the 
development rate of 𝑅𝑑 and 𝑅𝑝 is similar to the findings for 𝑅𝑐 and 𝑅𝑝 in 4WS. Considering that 𝑅𝑑 

does not interfere with 𝑅𝑝 and accounts for the viscous response of the arterial wall, the rapid 

reduction in  
𝑅𝑑

𝑅𝑝
⁄  ratio during early vascular development may well be related to the continuous 

adaptation of viscous and elastic vessel properties to different haemodynamic conditions [36].  
Figure 8  
 
 



The Modified Inertance Viscoelastic Windkessel Model 
 
The original IVW model is modified by adding a fifth element 𝑅𝑐, which is the characteristic impedance 
of the aorta in the absence of wave reflections. 
Applying KVL to the left mesh of the circuit in Figure 9, we have: 
 

𝑃𝑎 −  𝑄𝑎𝑅𝑐 −  𝐿
𝑑𝑄𝑎

𝑑𝑡
−  𝑃 = 0        (31) 

 

With: 𝑃 =  𝑃𝑎 − 𝑄𝑎𝑅𝑐 −  𝐿
𝑑𝑄𝑎

𝑑𝑡
         (32) 

 
Substituting (32) in (24), we have: 
 

𝑄𝑎 = 𝐶
𝑑

𝑑𝑡
(𝑃𝑎 − 𝑄𝑎𝑅𝑐 −  𝐿

𝑑𝑄𝑎

𝑑𝑡
) + (

1

𝑅𝑝
+ 

1

𝑅𝑑
) (𝑃𝑎 − 𝑄𝑎𝑅𝑐 −  𝐿

𝑑𝑄𝑎

𝑑𝑡
) 

 
And 
 

𝑄𝑎 = 𝐶
𝑑𝑃𝑎

𝑑𝑡
 −  𝑅𝑐𝐶

𝑑𝑄𝑎

𝑑𝑡
 −  𝐿𝐶

𝑑²𝑄𝑎

𝑑𝑡²
 +  (

1

𝑅𝑝
+  

1

𝑅𝑑
) 𝑃𝑎 −  𝑅𝑐 (

1

𝑅𝑝
+  

1

𝑅𝑑
) 𝑄𝑎 −  𝐿 (

1

𝑅𝑝
+  

1

𝑅𝑑
)

𝑑𝑄𝑎

𝑑𝑡
 (33) 

 
Rearranging, we have: 
 

𝐿𝐶
𝑑²𝑄𝑎

𝑑𝑡²
 +  [𝑅𝑐𝐶 +  𝐿 (

1

𝑅𝑝
+  

1

𝑅𝑑
)]

𝑑𝑄𝑎

𝑑𝑡
 +  [1 + 𝑅𝑐 (

1

𝑅𝑝
+ 

1

𝑅𝑑
)] 𝑄𝑎 = 𝐶

𝑑𝑃𝑎

𝑑𝑡
 +  (

1

𝑅𝑝
+ 

1

𝑅𝑑
) 𝑃𝑎  

 
Multiplying both sides by 𝑅𝑝𝑅𝑑, we obtain the ODE for the circuit in Figure 9 as follows: 

 

𝑅𝑝𝑅𝑑𝐿𝐶
𝑑²𝑄𝑎

𝑑𝑡²
 +  [𝑅𝑝𝑅𝑑𝑅𝑐𝐶 +  𝐿(𝑅𝑑 + 𝑅𝑝)]

𝑑𝑄𝑎

𝑑𝑡
 +  [𝑅𝑝𝑅𝑑 + 𝑅𝑐(𝑅𝑑 +  𝑅𝑝)]𝑄𝑎 = 𝑅𝑝𝑅𝑑𝐶

𝑑𝑃𝑎

𝑑𝑡
 +  (𝑅𝑑 +  𝑅𝑝)𝑃𝑎  

 
           (34) 
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The Windkessel Model Revisited 
 
The windkessel (reservoir) and wave theory are the two models developed in the attempt to explain 
the shape of arterial pressure waveform, which changes with ageing and pathological conditions. 
As previously discussed, the windkessel explains the pressure waveform in diastole satisfactorily but 
fails to model pressure changes in systole accurately. The wave theory models pressure waveform 
successfully but predicts the existence of "self-cancelling" forward and backward waves in diastole for 
which is difficult to find a biological explanation. More recently, a hybrid reservoir-wave model has 
been proposed as an alternative and controversial approach to arterial haemodynamics [39, 40].  
The reservoir-wave theory [41-43] is based on the assumption that measured pressure and flow 
consist of a volume-related (reservoir/windkessel) and wave-related (excess) components. The 
arterial blood pressure is conveniently separated into a reservoir pressure, which accounts for the 
energy stored by the elastic arterial walls during systole and released in diastole, and an excess 
pressure, which is dependent on local conditions and is defined as the difference between the 
measured arterial pressure and the reservoir pressure. 
In mathematical terms, we have: 
 

𝑃 =  𝑃𝑟𝑒𝑠 + 𝑃𝑒𝑥 
 
This approach aims to unify the analysis of systolic and diastolic haemodynamics and eliminate the 
apparently artefactual self-cancelling forward and backward (diastolic) waves observed with 
conventional wave separation [44]. Reservoir-related pressure changes should be excluded before 
wave motion analysis. 



When the reservoir-wave theory is applied to the aorta, the pressure gradient 
𝑑𝑃𝑟𝑒𝑠

𝑑𝑡
 must be 

proportional to the rate of change of volume, which is the instantaneous difference between inflow 
(𝑄𝑖𝑛) and outflow (𝑄𝑜𝑢𝑡) [39, 44]. 
As a consequence, we obtain the following equation: 
 
𝑑𝑃𝑟𝑒𝑠

𝑑𝑡
 = 

𝑑𝑃

𝑑𝑉
 (𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡)         (35) 

 
but 
 

 
𝑑𝑃

𝑑𝑉
 = 

1

𝐶
            (36) 

 
and  
 

𝑄𝑜𝑢𝑡 = 
𝑃𝑟𝑒𝑠− 𝑃∞

𝑅𝑟𝑒𝑠
          (37) 

 
where 𝑃∞ is the pressure at which flow through the microcirculation falls to zero (arterial asymptotic 
pressure). 
Substituting (36) and (37) in (35), we obtain: 
 
𝑑𝑃𝑟𝑒𝑠

𝑑𝑡
 = 

1

𝐶
 (𝑄𝑖𝑛 − 

𝑃𝑟𝑒𝑠− 𝑃∞

𝑅𝑟𝑒𝑠
) 

 
Rearranging, we obtain the final form of the differential equation: 
 
𝑑𝑃𝑟𝑒𝑠

𝑑𝑡
 = 

𝑄𝑖𝑛

𝐶
− 

𝑃𝑟𝑒𝑠− 𝑃∞

𝑅𝐶
         (38) 

 
The analytical solution is: 
 

𝑃𝑟𝑒𝑠 = 𝑃∞ + (𝑃𝑑 − 𝑃∞)𝑒
−𝑡

𝑅𝐶⁄  + 
𝑒

−𝑡
𝑅𝐶⁄

𝐶
∫ 𝑄𝑖𝑛(𝑡′)𝑒

𝑡′

𝑅𝐶⁄ 𝑑𝑡′𝑡

0
     (39) 

 
where 𝑄𝑖𝑛 is the flow into the aorta, 𝑃𝑑 is the diastolic pressure at 𝑡 = 0, 𝑃∞ is the arterial asymptotic 

pressure, 𝐶 is the arterial compliance and 𝑅𝐶 is the time constant of the diastolic pressure decrease.   
The arterial and venous reservoir are considered hydraulic integrators of the cardiovascular system 
[39]. The arterial reservoir buffers the intermittent filling secondary to LV ejection by modulating 
arterial pressure and reservoir outflow. The venous reservoir buffers the intermittent emptying of the 
veins secondary to RV filling by modulating venous pressure and reservoir inflow. 
The windkessel/reservoir analysis can be applied to account for the reservoir effect during LV filling 
[45]. The reservoir pressure is the minimum hydraulic work that the ventricle must perform in order to 
provide a flow waveform with the given net arterial compliance and resistance. The clinical implication 
of this theory relates to the integral of the excess pressure over the cardiac period as the “best” 
indicator of cardiac events such as myocardial infarction and stroke. 
The application of reservoir-wave theory to human arterial haemodynamics has led to interesting 
findings [46, 47]. While forward-, backward- and reservoir pressure increase with age, the increase in 
backward pressure is very small and its contribution to the overall pressure is unlikely to account for 
the large changes in pressure augmentation observed with aging and in pathological conditions. This 
interpretation challenges the widely accepted wave-reflection mechanism of pressure augmentation, 
which does not take into account the "cushioning" effect of the aortic reservoir but only the reflected 
waves returning from the distal aorta [39, 40]. 
The new approach may well contribute to further develop our understanding of the cardiovascular 
system but is certainly generating quite a debate [40, 48]. Criticism has been raised about 
inconsistency in the formulation of 𝑃𝑟𝑒𝑠 and the validity of modified wave analysis using 𝑃𝑒𝑥 [48-52]. 
  



LVADs Modelling 
 
Ventricular assist devices (VADs) are designed to support a failing heart with a view to recovery, 
bridge to transplant or long-term treatment. Broadly speaking, there are two main categories of 
mechanical blood pumps: volume-displacement and rotary pumps.  
Volume-displacement pumps consist of a chamber or a sac that fills passively or by suction and is 
compressed by an external pusher plate. Energy is transferred to the blood by periodic changes in a 
working space generating pulsatile flow. Inflow and outflow prosthetic valves are required. Devices 
such as HeartMate I XVE and Novacor are based on this principle. 
Rotary blood pumps can be axial, radial (centrifugal) and diagonal (mixed flow) according to the 
geometry of the impeller. Energy is transferred to the blood by velocity changes within the impeller 
vanes generating non-pulsatile flow. Axial flow pumps ( HeartMate II and Jarvik 2000) are driven by a 
spinning rotor around a central shaft. Centrifugal flow pumps (HeartWare and DuraHeart) are driven 
by a hydrodynamic or electromagnetic suspended spinning rotor. Rotary blood pumps are suitable for 
high flows up to 20 l/min at differential pressures lower than 500 mmHg. The radial design is capable 
of producing high pressures and low flows. An axial flow pump generates high flows at low pressure 
differences. A diagonal pump is a mixed flow system capable of generating high pressures and high 
flows. Pump design is normalized to pump size taking into account that a 60-mm-diameter centrifugal 
pump can eject more fluid at significantly higher pressures than a 6-mm-diameter axial pump. 
Volume-displacement pumps are known as first generation devices. Their performance is excellent at 
unloading the left ventricle and sustaining the circulation with a capacity to pump up to 10 L/min of 
pulsatile flow. However, there are clear disadvantages such as large size, complexity, noisy operating 
mode and limited durability because of many moving parts [53, 54]   
Rotary pumps with continuous axial flow requiring mechanical bearings and seals in contact with 
blood are known as second generation devices. They are smaller and safer to insert with more 
favourable durability because of only one moving part. Thrombus formation remains a feared 
complication and varies between pumps. Experience with this type of devices is well established [55-
58]. Rotary pumps with continuous flow based on magnetic levitation or non-contacting hydrodynamic 
bearings allowing the impeller to be suspended are known as third generation devices. These pumps 
are based on the concept of centrifugal flow and are even smaller than axial flow pumps. The use of 
magnetically levitated rotor systems is likely to improve durability. HeartWare and DuraHeart are two 
emerging devices based on this principle. Although clinical experience with these pumps is just 
getting under way, early results are promising [59-62]. 
A ventricular assist device consists of a pump with an inflow and an outflow cannulae. 
Energy loss secondary to pressure drop in both cannulae as a result of viscous loss is simulated by 
adding a resistive component to the model. An inductance component is added to account for the 
additional pressure drop observed in a pulsatile flow device because of the acceleration and 
deceleration of blood flow. This is also applicable to continuous flow devices where the interaction 
between the heart and the varying pressure head may generate pulsatile pump flow. 
A rotary blood pump can be modelled either considering the hydraulic component only or including 
the motor component too. Modelling hydraulic and motor component together may be a more useful 
approach because of the relation between the pump model and measurable parameters following 
device implantation such as power consumption and rotational speed. 
The flow generated by rotary blood pumps depends on the pressure head in contrast to displacement 
pumps where preload and afterload are independent factors. 
The traditional approach is to model rotary blood pumps using static performance curves, which relate 
flow rate and pressure head at different constant speed under steady conditions. According to Euler's 
equation, the pump pressure head can be estimated by a linear relationship with the flow rate and a 
quadratic relationship with the rotational speed as follows: 
 

𝐻 = 𝑎1𝑄 +  𝑐1𝜔2          (40) 
 
In order to improve the accuracy of pressure head estimation, additional parameters have been 
added such as a quadratic function of the flow rate to account for viscous loss across the pump, the 
time derivative of flow rate for energy loss secondary to fluid inertia and time derivative of rotational 
speed for pulsating operation mode [63-67]. The outcome is consistent with improved accuracy as 
shown by curve fitting and statistical analysis [68] although complexity is increased. 
The above parameters can be combined as follows [68]: 
 

𝐻 = 𝑎2𝑄 + 𝑏2𝑄2 + 𝑐2𝜔2         (41) 



𝐻 = 𝑎3𝑄 + 𝑏3𝑄2 + 𝑐3𝜔2 +  𝑒3
𝑑𝜔

𝑑𝑡
         (42) 

 

𝐻 = 𝑎4𝑄 + 𝑏4𝑄2 + 𝑐4𝜔2 +  𝑑4
𝑑𝑄

𝑑𝑡
         (43) 

 

𝐻 = 𝑎5𝑄 + 𝑏5𝑄2 + 𝑐5𝜔2 +  𝑑5
𝑑𝑄

𝑑𝑡
+  𝑒5

𝑑𝜔

𝑑𝑡
        (44) 

 
where H, Q and 𝜔 are functions of time.   
The above equations can be applied in order to model some of the pumps currently used in clinical 
practice.  
An axial flow pump can be characterized by the relation between pressure difference, flow and speed 
[69, 70]. Under steady state conditions, a linear relationship with the flow and a quadratic relationship 
with the pump speed are observed. In mathematical terms, we have: 
 

𝐻 = 𝑃𝑜 −  𝑃𝑖 =  𝑏0𝑄 + 𝑏1
𝑑𝑄

𝑑𝑡
 +  𝑏2𝜔2       (45) 

 

Where 𝑃𝑜 and 𝑃𝑖 are pressures at the outlet and the inlet of the pump; 
𝑑𝑄

𝑑𝑡
 is the time derivative of flow; 

𝑏0, 𝑏1 𝑎𝑛𝑑 𝑏2 are pump-dependent constant coefficients. The pressure difference is linearly dependent 
on flow derivative. The model identifies the characteristics of the pump and the state variables related 
to its operation and provide estimates of flow and pressure difference of the axial pump. 
An alternative approach is to model pump and cannulae separately [63, 64, 71, 72]. Only the 
hydraulic component of the pump is modelled and the rotational speed of the impeller is the only 
pump parameter that can be set by the user. The pump is in parallel with the left ventricle and a 4-
element windkessel is used for the coupling with the circulation. The model is based on the more 
frequently used surgical approach: inflow cannula through the apex of the left ventricle and outflow 
cannula to the ascending aorta as an end-to-side anastomosis. The cannulae have a cylindrical 
shape. A rotary blood pump can be considered as a series combination of an ideal pressure source 
and a resistive component that models energy loss. Therefore, the pump is modelled as the sum of 
two terms: one as a function of the rotational speed (generated energy) and the other as a function of 
the flow (energy loss). The HeartMate II and the HeartWare HVAD are rotary blood pumps that fulfil 
the above features. 
The equations describing the two pumps and their cannulae are as follows: 
 

𝐻𝑝 = 𝑅𝑝𝑄 + 𝐿𝑝
𝑑𝑄

𝑑𝑡
+  𝛽𝜔2        (46) 

 

𝐻𝑖 = 𝑅𝑖𝑄 + 𝐿𝑖
𝑑𝑄

𝑑𝑡
          (47) 

 

𝐻𝑜 = 𝑅𝑜𝑄 + 𝐿𝑜
𝑑𝑄

𝑑𝑡
         (48) 

 
where 𝐻𝑝 is the pressure difference (pressure head) (mmHg) across the pump; 𝐻𝑖 and 𝐻𝑜 are the 

pressure difference across the inlet and outlet cannulae; 𝑄 is the blood flow (l/min) through the pump 

and the cannulae;  𝑅𝑝 and 𝐿𝑝 are the pump resistance (mmHg·min2/l2) and inertance (mmHg·min2/l); 

𝑅𝑖 and 𝐿𝑖 are the resistance and the inertance of the inflow cannula; 𝑅𝑜 and 𝐿𝑜 are the resistance and 

the inertance of the outflow cannula; 𝜔 is the pump rotational speed (rpm) and 𝛽 is a pump-
dependent constant coefficient (mmHg/rpm2). 
The governing equation of the LVAD is the sum of the pressure difference across the inflow cannula, 
the pump and the outflow cannula (Figure 10) according to the following equation: 
 

∆𝑃 = 𝐻 =  𝐻𝑖 + 𝐻𝑝 + 𝐻𝑜 = (𝑅𝑖 + 𝑅𝑝 + 𝑅𝑜)𝑄 + (𝐿𝑖 + 𝐿𝑝 +  𝐿𝑜)
𝑑𝑄

𝑑𝑡
 + 𝛽𝜔2   (49) 

 
Considering that ∆𝑃 = 𝑃𝐴𝑜 −  𝑃𝐿𝑉; 𝑅 = 𝑅𝑖 +  𝑅𝑝 +  𝑅𝑜 and 𝐿 = 𝐿𝑖 +  𝐿𝑝 +  𝐿𝑜, the final equation becomes:  

 

𝑃𝐴𝑜 − 𝑃𝐿𝑉 = 𝑅 · 𝑄 + 𝐿
𝑑𝑄

𝑑𝑡
 + 𝛽𝜔2        (50) 

 
where 𝑃𝐴𝑜 is the aortic pressure (mmHg), 𝑃𝐿𝑉 is the left ventricular pressure (mmHg), 𝑅  is the total 

flow-dependent resistance (mmHg∙min2/l2) and 𝐿 is the total inertance (mmHg∙min2/l).  



VADs operate in the transitional region at the boundary of laminar and turbulent flow (low Reynolds 
number). If the pump flow pattern is expected to be turbulent, then the pump pressure loss is related 
to the square of the flow. The LVAD governing equation becomes: 
 

𝑃𝐴𝑜 − 𝑃𝐿𝑉 = 𝑅 · 𝑄2 + 𝐿
𝑑𝑄

𝑑𝑡
 + 𝛽𝜔2        (51) 

 
Continuous flow blood pumps operate at constant speed with a flow waveform related to the 
waveform of the pressure difference between the pump inlet (left ventricular pressure) and outlet 
(aortic pressure) [66, 73]. Therefore, the pump flow is affected by the pulsatility of the left ventricular 
pressure and the features of the pump itself. 
 
 
Figure 10  
 
 
A basic model assumes the right ventricle and the pulmonary circulation to be normal; therefore, their 
effect on the LVAD is negligible. The left ventricle is modelled with a time varying compliance 𝐶(𝑡), 
which is the reciprocal of the ventricular elastance function 𝐸(𝑡). In mathematical terms, we obtain: 
 

𝐸(𝑡) = 
𝑃𝐿𝑉(𝑡)

𝑉𝐿𝑉(𝑡)− 𝑉0
          (52) 

 
Where 𝑃𝐿𝑉(𝑡) is the left ventricular pressure, 𝑉𝐿𝑉(𝑡) is the left ventricular volume and 𝑉0is the 
theoretical ventricular volume at zero pressure. 
 
A Lagrange multiplier coupling approach [74] can be applied to LVAD modelling [75] using fictitious 
domain methods [76, 77] to address the interactions between the LVAD cannula and the ventricle at 
the expense of significant increase in computational time. These challenging aspects may be 
overcome with a 0D windkessel [78-81]. A windkessel model and a time-varying resistance have been 
used more recently for dynamic modelling of pulsatile pumps [82]. 
 
Discussion 
 
The contentious issue is whether forward and backward pressure waves in the arterial system 
represent reality. The current view [83] is that wave reflection exists and is caused mainly by the 
termination of low resistance arteries into high resistance arterioles resulting in the two major 
components of the arterial pressure wave [84-87]. This is the view shared by clinicians and 
physiologists [88] where wave reflection is considered as optimally timed in young humans but 
progressively mistimed in advanced age as the aorta stiffens [83]. 
Windkessel models do not take pressure wave reflection into account but a practical application of the 
3-element windkessel gives accurate computed aortic flow pulsations from arterial pressure during 
cardiopulmonary bypass [89] and in patients with septic shock [90]. 
The reservoir-wave approach proposes a different formulation of the 2-element windkessel model 
[91]. The theoretical background of the reservoir-wave approach is based on a reduced form of the 
wave equations (one-dimensional Navier-Stokes). It is argued [49] that dividing pressure into 
"reservoir" and wave components is theoretically problematic because reservoir and wave effects are 
not mutually exclusive: any phenomena viewed as a reservoir effect must also be explicable in terms 
of waves [50-52]. A recent comparison between reservoir-wave approach and traditional wave 
analyses in physiological numerical models containing well-defined impedance mismatches seems to 
favour the traditional approach [50, 51]. In contrast, impedance analysis assumes a steady-state 
system oscillating around mean pressure and cannot address to what extent waves from previous 
systole contribute to mean arterial pressure [92]. 
Arterial wave phenomena are spread across the entire wavelength range making quantitative 
interpretation of pressure and flow waveforms prone to error by using simple wave guide or 
windkessel models. Arterial blood pressure waveforms are the result of the interaction between 
ventricle and arterial system which show non-linear and time-dependent behaviour. Integration of 
ventricular and vascular concepts may lead to a more system-oriented interpretation of clinical 
measurements.  
The reservoir-wave approach may be considered as a time-domain representation of the 3-element 
windkessel model [93]. The 3-element windkessel describes input impedance and system behaviour 



as a whole [23] while the reservoir-wave approach separates wave from reservoir component [94]. 
Given the successful application of a 0D windkessel in LVAD modelling [78-81], the reservoir-wave 
approach may have a role to play. 
From a clinical point of view, it is difficult to answer whether forward and backward wave reflection 
represent reality because most interventional procedures affect both cardiac output and peripheral 
resistance with concomitant changes in forward and backward pressure waves. Forward pressure 
waves seem to play a major role in normal physiology compared to backward waves [95, 96]. A 
relative shift from forward to backward waves occurs in heart failure [97], which may be an attractive 
setting to study the reality of backward pressure waves. In fact, reflection magnitude, calculated as 
the ratio of backward to forward wave, has been identified as an important predictor of cardiovascular 
events in heart failure patients [98]. 
At present, there is no simple model that captures all the required elements in order to provide a full 
view of arterial wave travel and reflection [52]. The duality wave-particle of light is a very well 
established concept in physics. The same may be considered in haemodynamics where the two 
approaches would apply accordingly. 
 
Concluding Remarks 
 
The windkessel model is a simple and useful concept although in contrast with the modern 
approaches that interpret arterial pressure and flow waveforms in terms of wave propagation and 
reflection. Despite its limitations, the windkessel remains a widely used lumped parameter model for 
the cardiovascular system, particularly successful for the study of the interactions following the 
insertion of a left ventricular assist device. The reservoir-wave theory is a controversial alternative with 
potential for clinical application. This is a stimulating and exciting development that is certainly 
generating a debate but it may well contribute to further develop a different approach to LVAD 
modelling. 
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Figure 1 Diagram of a 2-E WK model: 𝑅 and 𝐶 are the resistance of the microcirculation and the 
compliance of the arteries. 
 

Qa

Right Atrium

Rc

P
Rp

Q

C

Pa

Aorta

3-E WK

  
 
Figure 2 Diagram of a 3-E WK model: 𝑅𝑐 is the characteristic impedance of the aorta in the absence 

of wave reflections; 𝑅𝑝 is the peripheral resistance; 𝐶 is the arterial compliance. 
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Figure 3 Diagram of a 4-E WK model: 𝐿 and 𝑅𝑐 are in series. 𝐿 is the inertance of blood and consists 

of the sum of all local inertances of the arterial system. 𝑅𝑐 is the characteristic impedance of the aorta 

in the absence of wave reflections; 𝑅𝑝 is the peripheral resistance; 𝐶 is the arterial compliance. 
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Figure 4 Diagram of the modified 4-E WK model: 𝐿 and 𝑅𝑐 are in parallel. 𝐿 is the inertance of blood 

and consists of the sum of all local inertances of the arterial system. 𝑅𝑐 is the characteristic 

impedance of the aorta in the absence of wave reflections; 𝑅𝑝 is the peripheral resistance; 𝐶 is the 

arterial compliance. 
 
 
 



 
 
Figure 5 Comparison of measured aortic input impedance with values predicted by the 2-element, 3-
element and 4-element windkessel model. Reprinted from: Westerhof N, Lankhaar J-W, Westerhof 
BE. Med Biol Eng Comput 2009; 47: 131-141. 
 
 

 
 
Figure 6 Electric analogue of the viscoelastic Windkessel model (VW) derived from a Voigt cell. 
Reprinted from: Burattini R, Natalucci S. Medical Engineering & Physics 1998; 20: 502-514 with 
permission from Elsevier. 
 
 



Qa

Right Atrium

P
Rp

Q

C

Pa

Aorta

Rd

VW

  
 
Figure 7 Electric analogue of the viscoelastic Windkessel model (VW). 𝑅𝑑 is a resistor accounting for 

viscous losses of wall motion. 𝑅𝑝 is the peripheral resistance; 𝐶 is the arterial compliance. 
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Figure 8 Electric analogue of the IVW model. 𝑅𝑑 is a resistor accounting for viscous losses of wall 

motion. 𝐿 is the inertance of blood and consists of the sum of all local inertances of the arterial 

system. 𝑅𝑝 is the peripheral resistance; 𝐶 is the arterial compliance. 
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Figure 9 Modified IVW model. 𝑅𝑑 is a resistor accounting for viscous losses of wall motion. 𝐿 is the 

inertance of blood and consists of the sum of all local inertances of the arterial system. 𝑅𝑐 is the 

characteristic impedance of the aorta in the absence of wave reflections; 𝑅𝑝 is the peripheral 

resistance; 𝐶 is the arterial compliance. 
 
 
 

 
 
Figure 10 Electric analog of LVAD model coupled with the circulation: LV, rotary blood pump in 
parallel and 4-element windkessel. From: Artificial Organs 2002; 26(12): 1032-1039 with permission 
from John Wiley and Sons. 
 
 
 
 
 
 
 
 


