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The Boltzmann equation with an arbitrary intermolecular potential is solved by the fast
spectral method. As examples, noble gases described by the Lennard-Jones potential
are considered. The accuracy of the method is assessed by comparing both transport
coefficients with variational solutions and mass/heat flow rates in Poiseuille/thermal
transpiration flows with results from the discrete velocity method. The fast spectral
method is then applied to Fourier and Couette flows between two parallel plates, and
the influence of the intermolecular potential on various flow properties is investigated.
It is found that for gas flows with the same rarefaction parameter, differences in the
heat flux in Fourier flow and the shear stress in Couette flow are small. However,
differences in other quantities such as density, temperature, and velocity can be very
large. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929485]

I. INTRODUCTION

When the ratio of the molecular mean free path to the characteristic flow length becomes signif-
icant, the Boltzmann equation (BE) is the best tool to investigate the rarefied gas dynamics.1 The BE
employs a one-particle velocity distribution function (VDF) to describe the state of a macroscopic
volume of gas consisting of a large number of molecules, where the linear streaming operator models
the molecular transport and the nonlinear Boltzmann collision operator (BCO) describes the binary
molecular collisions.

The intermolecular potential is incorporated into the BCO through the differential cross section
(DCS). As the DCSs for realistic potentials such as Lennard-Jones (LJ) or the potentials from ab initio
calculations are very complicated, the simple hard-sphere (HS) model with a constant value of DCS is
widely adopted.2 However, the viscosity and heat conductivity of the HS model are proportional to the
square root of the gas temperature, which does not agree with experimental data for common gases.
To overcome this drawback, variable HS,2 variable soft-sphere,3 generalized HS,4 and generalized
soft-sphere5 models have been proposed for the direct simulation Monte Carlo (DSMC) simulation
of the BE. Also, the µ-DSMC method has been proposed in order to reproduce an arbitrary viscosity
variation with temperature.6 In our recent fast spectral approximation of the BCO, some special forms
of the DCS were used to recover Sutherland’s formula for viscosity, as well as the viscosity of the LJ
potential.7,8

Note that all these DCSs were proposed in order to match the viscosity, and sometimes the mass
diffusion coefficient, with experimental data or theoretical values, but they ignore or simplify the
detailed dependence of the DCS on the deflection angle and the relative collision energy which are
characteristic of realistic potentials. For gas mixtures, the use of simplified DCSs becomes problem-
atic, since it is difficult to recover the mass diffusion and thermal diffusion coefficients simultaneously
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for general intermolecular potentials. As the intermolecular potential can strongly influence certain
phenomena in rarefied gases,9,10 a numerical method to solve the BE with realistic potentials is ur-
gently needed.

Implementation of the LJ potential in DSMC has been reported previously,11 but was time-
consuming as the deflection angle was calculated for every binary collision. Recently, the LJ potential
and some ab initio potentials were successfully implemented into the DSMC method by
pre-calculating the deflection and storing the results in a table.12–14 Alternatively, a LJ polynomial
approximation model was proposed to represent the deflection angle as a polynomial expansion in
non-dimensional collision parameters.15,16 Realistic intermolecular potentials have also been used in
some deterministic numerical methods for solutions of the BE.10,17,18 However, the discrete velocity
method developed for the linearized BE10,17 has a very high computational cost, which means it can
only be applied to simple geometries, while the accuracy of the projection-interpolation method18 is
not clear when the VDF has steep variations or large discontinuities.

The aim of the present paper is to implement realistic intermolecular potentials in the fast spectral
method (FSM), which is a promising numerical method for solving the BE deterministically.7,8,19,20

By testing the proposed method, we also demonstrate the conditions in which the variable HS model
can be adopted.

II. BOLTZMANN EQUATION

The state of a dilute monatomic gas is described by the VDF f (t, x, v) of the molecular velocity
v = (v1, v2, v3) at spatial location x = (x1, x2, x3) and time t. The evolution of f is governed by the BE,

∂ f
∂t
+ v

∂ f
∂x
= Q( f , f∗), (1)

where v∂/∂x is the streaming operator, while Q is the BCO defined by

Q( f , f∗) =

R3


S2
|v − v∗|σ(θ, |v − v∗|)[ f (v ′∗) f (v ′) − f (v∗) f (v)]dΩdv∗. (2)

In the above equations, v, v∗ are the molecular velocities before the binary collision, while v ′, v ′∗
are the corresponding post-collision velocities. Conservation of momentum and energy yields v ′ =
v + (|u|Ω − u)/2 and v ′∗ = v∗ − (|u|Ω − u)/2, where u = v − v∗ is the relative pre-collision velocity and
Ω is a vector in the unit sphereS2 along the relative post-collision velocity v ′ − v ′∗. The deflection angle
θ between the pre- and post-collision relative velocities satisfies cos θ = Ω · u/|u|, with 0 ≤ θ ≤ π.
Finally, σ(θ, |v − v∗|) is the DCS. For HS molecules with a molecular diameter d, it is d2/4, while for
a general intermolecular potential, the dependence of σ on |u| and θ is complicated and the numerical
calculation of the DCS is necessary. Detailed information can be found in a recent publication.17

In this paper, we consider following (6-12) LJ potential as an example:

U ′(ρ′) = 4ϵ


(
d
ρ′

)12

−
(

d
ρ′

)6
, (3)

where ρ′ is the intermolecular distance, ϵ is a potential depth, and d is the distance at which the poten-
tial is zero. As the interaction range of the LJ potential is ostensibly infinity, the total cross section,
i.e., the integral of the DCS with respect to the deflection angle, is infinity too. In practice, however,
a finite cutoff either in the deflection angle16,18,21,22 or in the radial potential10,17,23 is introduced.

A. Normalizations

For practical calculations, it is convenient to introduce dimensionless variables. Here, the spatial
location is normalized by the characteristic length ℓ, temperature is normalized by T0, velocity is
normalized by the most probable molecular speed vm =

√
2kBT0/m, time is normalized by ℓ/vm,

molecular number density is normalized by n0, and the VDF is normalized by n0/v
3
m, where kB is

the Boltzmann constant. Also, in the numerical evaluation of the DCS for (6-12) LJ potential, the
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intermolecular distance ρ′ is normalized by d. Therefore, the BE becomes

∂ f
∂t
+ v

∂ f
∂x
= n0d2ℓ


R3


S2
|u|σ(θ, |u|vm) f (v ′∗) f (v ′)dΩdv∗                                                                                                        

Q+

−ν(v) f , (4)

where ν(v) = n0d2ℓ

R3


S2 |u|σ(θ, |u|vm) f (v∗)dΩdv∗ is the collision frequency and σ(θ, |u|vm) is

exactly the same as the DCS σ(θ,E) in Ref. 17 with the dimensionless relative collision energy
E = u2kBT0/(2ϵ).

The normalized density, flow velocity, and temperature are given by

n =


f dv, V =
1
n


v f dv, T =

2
3n


|v − V |2 f dv, (5)

while the pressure tensor and heat flux, which are normalized by n0kBT0 and n0kBT0vm, respectively,
are given by

Pij = 2


(vi − Vi)(v j − Vj) f dv, qi =


|v − V |2(vi − Vi) f dv, (6)

where i, j = 1,2,3.

B. Linearized Boltzmann equation

When the system state deviates only slightly from equilibrium, BE (4) can be linearized. We
express the VDF around the global equilibrium state as

f (t, x, v) = feq(v) + h(t, x, v), feq(v) = π−3/2 exp(−v2), (7)

where h is the deviation function satisfying |h/ feq| ≪ 1. The evolution of h is governed by the line-
arized BE,

∂h
∂t
+ v

∂h
∂x
= L(h), (8)

with the linearized BCO

L(h) = n0d2ℓ


R3


S2
|u|σ[ feq(v ′∗)h(v ′) + h(v ′∗) feq(v ′) − h(v∗) feq(v)]dΩdv∗                                                                                                                                                                  

L+(h)

−νeqh, (9)

where νeq = n0d2ℓ

S2 |u|σ feq(v ′∗)dΩdv∗ is the equilibrium collision frequency.

III. FAST SPECTRAL METHOD FOR THE BOLTZMANN COLLISION OPERATOR

In this section, we focus on the numerical approximation of the BCO; the approximation of
linearized collision operator (9) can be performed according to the relationL(h) = Q[ feq(v),h(v∗)] +
Q[h(v), feq(v∗)]. For simplicity, the coefficient n0d2ℓ is regarded as 1.

We rewrite the BCO in the Carleman representation as7

Q( f , f∗) = 4

R3


R3
σδ(y · z)[ f (v + z) f (v + y) − f (v + y + z) f (v)]dydz, (10)

where δ is Dirac’s delta function, and the DCS becomes

σ(θ, |u|vm) = σ
(
2 arctan

|y |
|z | , vm


|y |2 + |z2|

)
≡ σ′(|y |, |z |). (11)

The VDF is periodized on the truncated velocity domain DL = [−L,L]3. For simplicity, we
adopt uniform discretization in velocity space, vk( jk) = 2 jkL/Nk with k = 1,2,3, where jk ∈ [−Nk/2,
−Nk/2 + 1, . . . ,Nk/2 − 1] and Nk is the number of velocity grid points in the kth velocity direction,
although in the simulation of highly rarefied gas flows the velocity space would be better discretized
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non-uniformly.8,20 The VDF is approximated by a truncated Fourier series, f (v) = (N1,N2,N3)/2−1
j=−(N1,N2,N3)/2

f̂ j exp(iξ j · v), where f̂ j =

DL

f (v) exp(−iξ j · v)dv/(2L)3, j = ( j1, j2, j3) is the Fourier spectrum of
the VDF, i is the imaginary unit, and ξ j = jπ/L are the frequency components.

Equation (10) is truncated to Q( f , f∗) = 4

BR


BR σ

′(|y |, |z |)δ(y · z)[ f (v + z) f (v + y) − f (v +
y + z) f (v)]dydz, where R ≥

√
2S and BS (a sphere of radius S centered on the origin) is the support

of the VDF.19 Our numerical experience suggests that R = 2
√

2L/(2 + √2) is a good choice.7,8 The
truncated BCO is also expanded by the Fourier series, where its jth Fourier coefficient is related to
the Fourier coefficient f̂ of the VDF as follows:

Q j =
1

(2L)3

DL

Q(v) exp(−iξ j · v)dv =
(N1,N2,N3)/2−1

l+m= j
l,m=−(N1,N2,N3)/2

f̂ l f̂m[β(l,m) − β(m,m)], (12)

where l = (l1, l2, l3), m = (m1,m2,m3), and the kernel mode β(l,m) is

β(l,m) =
 

δ(e · e′)
 R

−R

 R

−R
|ρρ′|σ′(|ρ|, |ρ′|) exp(iρξl · e + iρ′ξm · e′)dρdρ′


de′de, (13)

with e,e′ being the vectors in the unit sphere S2.
The integration with respect to ρ in Eq. (13) can be approximated by a numerical quadrature.

Suppose ρr and ωr (r = 1,2, . . . ,Mr) are the abscissas and weights of a quadrature for ρ in the
region [0,R], Eq. (13) becomes β(l,m) = 

r ωr


φ(ρr , ξl · e)


δ(e · e′)ψ(ρr , ξm · e′)de′de, where

ψ(ρr , s) = 2
 R

0 ρ′σ′(ρr , ρ′) cos(ρ′s)dρ′ and φ(ρr , s) = 2ρr cos(ρrs). Following the steps from
Eq. (34) to Eq. (39) in Ref. 7, the final expression for the kernel mode is

β(l,m) = 4
M,M,Mr
p,q,r=1

ωpωqωrφ(ρr , ξl · eθp,ϕq)ψ ′
(
ρr ,


|ξm|2 − |ξm · eθp,ϕq |2

)
sin θp, (14)

where θp (ϕq) and ωp (ωq) are the p (q)th point and weight in the Gauss-Legendre quadrature with
θ,ϕ ∈ [0, π] and

ψ ′(ρr , s) =
 π

0
ψ(ρr , s cos θ2)dθ2 = 2π

 R

0
ρ′σ′(ρr , ρ′)J0(ρ′s)dρ′, (15)

with J0 being the zeroth-order Bessel function of first kind.
Thus, combining Eqs. (12) and (14), Q can be calculated through FFT-based convolution, with

a computational cost of O(M2MrN3 log N). Since M and Mr can be far smaller than N , the FSM
proposed here is faster than conventional spectral methods that have a cost of O(N6). Note that in our
previous works,7,8 a special form of DCS was proposed to approximate the DCS for the LJ poten-
tial, and since that special DCS can be decomposed into the form of σ′(|y |, |z |) = σ′1(|y |)σ′2(|z |), the
integration with respect to ρ in Eq. (13) can be expressed analytically, resulting in a computational
cost of O(M2N3 log N) for the BCO. Here, for general DCSs, one must approximate the integration
with respect to ρ or ρ′ by a numerical quadrature to get a computational gain; and this approximation
extends the applicability of the FSM.

Finally, when Q is obtained, the BCO is then calculated through Q(v) =  Q j exp(iξ j · v). As
with the FSM that was developed for specific forms of DCS, this new FSM conserves mass, while
momentum and energy are conserved at spectral accuracy.

To obtain the kernel mode β(l,m), ρ is first discretized and thenψ ′(ρr , s) is calculated. For (6-12)
LJ potential, for each relative collision energy E, the DCS is a continuous function of the deflec-
tion angle at E = u2kBT0/(2ϵ) = (ρ2

r + ρ
′2)kBT0/(2ϵ) . 1 and has one discontinuous point at E > 1.17

Therefore, the integration region 0 ≤ ρ ≤ R is divided into two regions: the first region [0,√2ϵ/kBT0]
is divided into 9 uniform sections, while the second region [√2ϵ/kBT0,R] is discretized according
to the Gauss-Legendre quadrature of order 7. So the number of points in the discretization of ρ is
Mr = 16.

When ρr is determined, the integral given by Eq. (15) is calculated numerically, where
s ∈ [0,max(√3ξ)] is uniformly discretized into 8000 sections. The key part is to calculate the
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DCS σ′(ρr , ρ′). We first check the continuity of the DCS as ρ′ goes from 0 to R. If σ′(ρr , ρ′)
is continuous, then Eq. (15) is approximated by the Gauss-Legendre quadrature of order 120.
Otherwise, suppose σ′(ρr , ρ′) is discontinuous at ρ′ = ρ′

d
, then the region ρ′ ∈ [0, ρ′

d
) is dis-

cretized non-uniformly by 60 points, with most of the points located near ρ′
d
, while the remain-

ing region ρ′ ∈ [ρ′
d
,R] is approximated by the Gauss-Legendre quadrature of order 60. In the

numerical integration of ψ ′, a DCS with deflection angle less than 0.05 radians is neglected.

Finally, when ψ ′ (ρr , s) is obtained, ψ ′
(
ρr ,


|ξm|2 − |ξm · eθp,ϕq |2

)
is calculated through cubic

interpolation.

IV. NUMERICAL ACCURACY

To assess the accuracy of the proposed FSM, we run two test cases. The first is the calculation
of the transport coefficients of five noble gases and the second is the calculation of mass/heat flow
rates in Poiseuille/thermal transpiration flows. We compare our results with those from the variational
method24 and the discrete velocity method.10,17

A. Transport coefficients

The shear viscosity µ′ and thermal conductivity κ′ are calculated as

µ′ =
mvm
d2


hµ(v)v1v2dv ≡ mvm

d2 µ,

κ′ =
kBvm

d2


hκ(v)v1

(
v2 − 5

2

)
dv ≡ kBvm

d2 κ,

(16)

where µ and κ are the reduced shear viscosity and thermal conductivity, respectively. The two func-
tions hµ(v) and hκ(v) satisfy the following integral equations:

L(hµ) = −2 feqv1v2,

L(hκ) = − feqv1

(
v2 − 5

2

)
, and


hκv1dv = 0.

(17)

To find hµ and hκ, Eq. (17) is solved by the following iterative scheme (with k the iteration step),

h(k+1)
µ =

L+(h(k)
µ ) + 2 feqv1v2

νeq
,

h(k+1)
κ =

L+(h(k)
κ ) + feqv1

�
v2 − 5

2

�

νeq
, h(k+1)

κ = h(k+1)
κ − 2 feqv1


h(k+1)
κ v1dv.

(18)

The molecular velocity space [−6, 6]3 is discretized by 64 × 24 × 24 uniform grid points, while
M = 8 is chosen in the discretization of the solid angle, see Eq. (14). Potential depths for the five
noble gases are adopted from Ref. 17, kBT0/ϵ are 29.35, 8.403, 2.419, 1.579, and 1.310 for He, Ne,
Ar, Kr, and Xe, respectively, at T0 = 300 K. The iterations of Eq. (18) are terminated when the relative
difference in the transport coefficient between two consecutive iterative steps is less than 10−6. When
the DCS is obtained, our FSM needs less than 30 s to obtain one transport coefficient, through a
Matlab program running on an Intel Xeon 3.3 GHz CPU. Numerical results for the transport coef-
ficients are summarized in Table I, where we see that the difference between the FSM results and
those from the variational and discrete velocity methods17 is small: the maximum relative error is less
than 0.5%.

It is interesting to see how the inverse Schmidt number, defined as the ratio of mass diffusivity to
momentum diffusivity (viscosity), changes between the various noble gases. Here, the mass-diffusion
coefficient is calculated as

D′ =
vm

nd2


h(v)v1dv ≡ vm

nd2 D, (19)
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TABLE I. Comparisons of reduced transport coefficients obtained from the FSM with those from the variational method
with third-order Chapman-Cowling approximation24 and the discrete velocity method.17

Reduced shear viscosity µ Reduced thermal conductivity κ

Gas
Variational method

µ(3)
Discrete velocity

method FSM
Variational method

κ(3)
Discrete velocity

method FSM

He 0.178 73 0.1787 0.1789 0.673 20 0.6740 0.6742
Ne 0.148 78 0.1480 0.1486 0.560 18 0.5600 0.5596
Ar 0.113 14 0.1130 0.1132 0.424 79 0.4260 0.4251
Kr 0.096 90 0.0968 0.0967 0.363 49 0.3645 0.3629
Xe 0.089 28 0.0892 0.0894 0.334 85 0.3358 0.3354

where D is the reduced mass-diffusion coefficient and h(v) satisfies the following equation:

n0d2ℓ


R3


S2
|u|σ[ feq(v ′∗)h(v ′) − h(v ′∗) feq(v ′) + h(v∗) feq(v)]dΩdv∗                                                                                                                                                                  

L+
D
(h)

−νeqh = −2 feqv1. (20)

Similar to Eq. (17), Eq. (20) is solved in the following iterative scheme:

h(k+1) =
L+D(h(k)) + 2 feqv1

νeq
. (21)

Numerical results from the FSM for noble gases and the HS gas at T = 300 K are shown in
Table II, together with those from the variational method.1,25 We find that the relative error between
the two methods is about 2%.

B. Poiseuille and thermal transpiration flows

We now consider a monatomic gas confined between two parallel infinite plates located at
x2 = ±ℓ/2. In Poiseuille flow, the wall temperature is fixed at T0 and a uniform pressure gradient is
imposed on the gas in the x3 direction: the pressure is given by n0kBT0(1 + ξPx3/ℓ), with |ξP | ≪ 1.
In thermal transpiration flow, the pressure is fixed at n0kBT0, but a temperature gradient is imposed
on both walls: the wall temperature is T = T0(1 + ξT x3/ℓ), with |ξT | ≪ 1. The VDF is expressed
as f = feq + ξP(x3 feq + hP) + ξT[x3 feq(v2 − 5/2) + hT], and the perturbation functions hP and hT
satisfy

v2
∂hα

∂x2
= L(hα) + Sα, α = P, T,

SP = −v3 feq, ST = −v3

(
v2 − 5

2

)
feq,

(22)

where subscripts P and T stand for the Poiseuille and thermal transpiration flows, respectively.
We assume a diffuse gas-wall interaction, so hα is zero for gas molecules entering the compu-

tational domain. Due to symmetry, only half of the spatial domain is considered: the normalized x2

TABLE II. Comparisons of inverse Schmidt number (nmD′/µ′) obtained
from the FSM with those from the variational method with first-order
Chapman-Cowling approximation.24,25

Gas HS He Ne Ar Kr Xe

Variational method 1.2 1.32 1.35 1.33 1.29 1.33
FSM 1.2128 1.3541 1.3321 1.3139 1.3199 1.3237
Relative error (%) 1.1 2.2 1.5 1.5 2.3 0.8
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varies from −1/2 to 0. The dimensionless mass and heat flow rates are GP = −4
 0
−1/2 VPdx2, GT =

4
 0
−1/2 VTdx2, QP = 4

 0
−1/2 qPdx2, and QT = −4

 0
−1/2 qTdx2, where the gas velocity is Vα =


v3hαdv

and the heat flux is qα =

v3

�
v2 − 5

2

�
hαdv . These flow rates are a function of the rarefaction param-

eter, defined as

δ =
n0kBT0ℓ

µ′vm
. (23)

In the numerical simulations, the spatial domain −0.5 ≤ x2 ≤ 0 is divided into 100 non-uniform
sections, with most of the discrete points placed near the wall, x2 = (10 − 15s + 6s2)s3 − 0.5,
where s = (0,1, . . . ,100)/200. Because of the symmetry and smoothness of the VDF in the v1
and v3 directions, N1,N3 = 12 uniform grids are used in the v1(>0) and v3(>0) directions, where
the maximum molecular velocity is at L = 6. In the discretization of v2, N2 = 128 non-uniform
grid points are used, v2 = 4(−N2 + 1,−N2 + 3, . . . ,N2 − 1)3/(N2 − 1)3, with most of the grid points
located near v2 ∼ 0. This choice is necessary at small values of the rarefaction parameter, as the
VDF over-concentrates in this region.21 The number of frequency components in the ξ1 and ξ3
directions are 24 × 24, while there are 64 frequency components in the ξ2 direction. For more details,
see Ref. 8.

We use the following iterative scheme to solve Eq. (22):

v2
∂h(k+1)

α

∂x2
+ νeq(v)h(k+1)

α = L+(h(k)
α ) + Sα, (24)

where k is the iteration step and the spatial derivative is approximated by a second-order upwind finite
difference. Iterations are terminated when the relative difference in mass and heat flow rates between
two consecutive steps is less than 10−6.

Tables III–V compare our numerical results for GP,GT , and QT with those by Sharipov and
Bertoldo.10 The mass flow rate GT is not shown, as GT = QP according to the Onsager-Casimir rela-
tion, and our numerical results show that the relative difference between GT and QP is less than
0.2%. For δ ≥ 0.025, the difference between our results and those of Sharipov and Bertoldo is .1%,
which increases to about 2% at δ = 0.01. These differences are small, as the numerical accuracy of
the discrete velocity method itself is about 0.8%.10

TABLE III. Mass flow rate GP in the Poiseuille flow of various gases between parallel infinite plates. The data in columns
denoted by SB are from Ref. 10.

He Ne Ar Kr Xe

δ FSM SB FSM SB FSM SB FSM SB FSM SB

0.010 2.713 2.668 2.607 2.581 2.535 2.502 2.538 2.495 2.547 2.497
0.020 2.432 2.424 2.362 2.358 2.292 2.280 2.286 2.269 2.290 2.270
0.025 2.348 2.345 2.289 2.287 2.219 2.211 2.211 2.199 2.214 2.199
0.040 2.180 2.182 2.141 2.140 2.076 2.072 2.063 2.058 2.064 2.057
0.050 2.105 2.107 2.074 2.073 2.011 2.009 1.998 1.995 1.998 1.993
0.100 1.892 1.893 1.879 1.876 1.829 1.830 1.815 1.816 1.813 1.813
0.200 1.713 1.715 1.708 1.707 1.677 1.679 1.666 1.668 1.663 1.665
0.250 1.665 1.667 1.661 1.661 1.636 1.637 1.626 1.628 1.624 1.625
0.400 1.581 1.582 1.579 1.580 1.564 1.566 1.558 1.559 1.556 1.557
0.500 1.550 1.552 1.549 1.550 1.539 1.540 1.534 1.535 1.532 1.533
1.000 1.505 1.507 1.505 1.508 1.505 1.507 1.505 1.507 1.505 1.507
1.600 1.532 1.534 1.533 1.536 1.537 1.540 1.540 1.543 1.541 1.544
2.000 1.568 1.570 1.568 1.572 1.575 1.578 1.579 1.582 1.580 1.583
2.500 1.622 1.624 1.623 1.626 1.630 1.634 1.636 1.639 1.637 1.641
4.000 1.817 1.819 1.818 1.822 1.828 1.833 1.835 1.839 1.838 1.842
5.000 1.960 1.963 1.961 1.966 1.972 1.978 1.980 1.985 1.983 1.988
10.00 2.732 2.740 2.732 2.743 2.743 2.756 2.752 2.764 2.756 2.768
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TABLE IV. Heat flow rate QP in Poiseuille flow of various gases between parallel infinite plates. The data in columns
denoted by SB are results from Ref. 10.

He Ne Ar Kr Xe

δ FSM SB FSM SB FSM SB FSM SB FSM SB

0.010 1.152 1.142 1.070 1.103 1.057 1.055 1.065 1.053 1.072 1.056
0.020 1.021 1.027 0.961 0.990 0.930 0.937 0.933 0.933 0.938 0.935
0.025 0.981 0.989 0.929 0.954 0.893 0.900 0.894 0.895 0.898 0.897
0.040 0.900 0.909 0.862 0.878 0.819 0.824 0.815 0.818 0.818 0.819
0.050 0.863 0.870 0.831 0.843 0.785 0.790 0.780 0.782 0.782 0.783
0.100 0.749 0.751 0.732 0.734 0.688 0.689 0.679 0.680 0.679 0.679
0.200 0.637 0.637 0.629 0.627 0.596 0.595 0.586 0.585 0.584 0.583
0.250 0.601 0.601 0.595 0.593 0.566 0.565 0.557 0.556 0.555 0.554
0.400 0.526 0.526 0.523 0.521 0.504 0.503 0.497 0.495 0.495 0.493
0.500 0.491 0.491 0.489 0.487 0.474 0.473 0.468 0.467 0.466 0.465
1.000 0.385 0.385 0.384 0.383 0.380 0.379 0.378 0.377 0.377 0.376
1.600 0.315 0.315 0.315 0.314 0.315 0.315 0.316 0.315 0.315 0.315
2.000 0.282 0.282 0.283 0.282 0.285 0.284 0.286 0.285 0.286 0.286
2.500 0.251 0.251 0.251 0.251 0.254 0.254 0.256 0.256 0.257 0.256
4.000 0.188 0.188 0.189 0.189 0.193 0.193 0.196 0.196 0.197 0.197
5.000 0.161 0.161 0.162 0.162 0.166 0.166 0.169 0.169 0.170 0.170
10.00 0.093 0.093 0.093 0.093 0.097 0.097 0.099 0.099 0.100 0.100

V. APPLICATIONS

We now apply the FSM for the BE with LJ potentials to solve Couette and Fourier flows between
two parallel plates. The five noble gases He, Ne, Ar, Kr, and Xe, as well as the variable HS gas, are
considered and the effect of the intermolecular potential on the flow properties is investigated. Note
that for the variable HS gas, the DCS is proportional to |u|1−2ω, where ω is the viscosity index (i.e.,
the gas viscosity is proportional to Tω). For the HS gas, ω = 0.5, while for He and Xe at T = 300 K,
ω = 0.66 and 0.85, respectively.

TABLE V. Heat flow rate QT in thermal transpiration flow of various gases between parallel infinite plates. The data in
columns denoted by SB are results from Ref. 10.

He Ne Ar Kr Xe

δ FSM SB FSM SB FSM SB FSM SB FSM SB

0.010 5.946 5.879 5.761 5.684 5.585 5.512 5.589 5.496 5.606 5.500
0.020 5.263 5.263 5.139 5.121 4.983 4.958 4.969 4.934 4.977 4.935
0.025 5.051 5.059 4.946 4.936 4.796 4.779 4.777 4.754 4.783 4.754
0.040 4.614 4.626 4.544 4.542 4.409 4.404 4.384 4.376 4.385 4.373
0.050 4.411 4.421 4.354 4.353 4.228 4.225 4.201 4.197 4.199 4.193
0.100 3.789 3.792 3.761 3.761 3.665 3.669 3.637 3.641 3.633 3.635
0.200 3.172 3.174 3.159 3.162 3.096 3.103 3.073 3.080 3.068 3.074
0.250 2.974 2.977 2.964 2.968 2.911 2.918 2.890 2.897 2.884 2.891
0.400 2.559 2.562 2.553 2.560 2.517 2.525 2.500 2.508 2.495 2.502
0.500 2.364 2.367 2.359 2.366 2.329 2.337 2.314 2.322 2.309 2.317
1.000 1.767 1.770 1.765 1.771 1.748 1.756 1.738 1.745 1.735 1.741
1.600 1.383 1.385 1.382 1.387 1.370 1.377 1.363 1.369 1.361 1.366
2.000 1.212 1.213 1.210 1.216 1.201 1.207 1.195 1.201 1.193 1.198
2.500 1.050 1.051 1.049 1.053 1.042 1.046 1.037 1.041 1.035 1.039
4.000 0.754 0.750 0.748 0.752 0.744 0.747 0.741 0.744 0.740 0.743
5.000 0.628 0.629 0.627 0.630 0.624 0.627 0.622 0.625 0.621 0.624
10.00 0.345 0.345 0.345 0.346 0.343 0.345 0.343 0.344 0.342 0.344
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FIG. 1. Normalized density and temperature half-channel profiles in the linearized Fourier flow of various gases between
two parallel plates with δ = 0.1.

A. Planar Fourier flow

The geometry is the same as that of the Poiseuille flow in Section IV B, except that the plate
at x2 = −1/2 has a temperature T0 − ∆T/2, while the plate at x2 = 1/2 has a temperature T0 + ∆T/2.
Also, there is no pressure gradient along the x1 and x3 directions. We first assume that the temperature
difference ∆T is negligible compared to T0, so that BE (4) can be linearized to Eq. (8) by expressing
the VDF as f = feq + h∆T/T0.

The spatial region −1/2 ≤ x2 ≤ 0 is discretized by 100 non-uniform grid points, with most of
the grid points located near the wall. The three-dimensional molecular velocity domain [−6,6]3 is
discretized by 32 × 128 × 32 grid points, and the number of frequency components is 32 × 48 × 32.
Assuming diffuse gas-wall interaction, the boundary condition reads

h(v, x2 = −0.5) =

1 − 1

2
v2 − 2

√
π


v2<0

v2h(v, x2 = −0.5)dv


feq, at v2 > 0, (25)

while at x2 = 0, symmetry leads to h(v1, v2, v3) = −h(v1,−v2, v3) when v2 < 0. The iterative scheme
v2∂h(k+1)/∂x2 + νeq(v)h(k+1) = L+(h(k)) is used, and the iterations are terminated when the maximum
relative difference in the density n =


hdv , temperature T = 2


hv2dv/3 − n, and heat flux q2 =

hv2v2dv between two consecutive steps is less than 10−5.
Typical density and temperature profiles are shown in Fig. 1 for a rarefaction parameter of δ = 0.1

and T0 = 300 K. Although they have the same rarefaction parameter, the macroscopic properties of
the six gases are quite different. The differences are summarized in Table VI for δ = 0.1, 1, and 10.

TABLE VI. Normalized gas density (n) and temperature (T ) at the plate located at x2=−0.5 and the heat flux (q2) in the
linearized Fourier flow at T0= 300 K.

δ = 0.1 δ = 1 δ = 10

n −T q2 n −T q2 n −T q2

HS 0.050 0.064 0.536 0.176 0.206 0.406 0.392 0.405 0.137
He 0.061 0.074 0.534 0.184 0.214 0.403 0.395 0.408 0.136
Ne 0.065 0.077 0.533 0.187 0.216 0.402 0.396 0.408 0.136
Ar 0.069 0.081 0.531 0.193 0.221 0.398 0.398 0.410 0.135
Kr 0.070 0.080 0.530 0.196 0.224 0.397 0.398 0.411 0.135
Xe 0.070 0.080 0.530 0.196 0.224 0.396 0.399 0.411 0.134
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At the wall, when δ = 0.1, the relative difference in density between He and the HS gas is 22%. This
difference between LJ and HS potentials increases as kBT0/ϵ decreases: the density of Xe at the wall is
40% larger than that of the HS gas. For the temperature, the largest difference between the noble gases
and the HS gas reaches 25%. As δ increases, relative differences in the densities and the temperature
decrease: when δ = 1, relative differences in the density and temperature of the HS gas and Xe at
the wall are reduced to 11.4% and 8.7%, respectively, while they are 1.8% and 1.5% by δ = 10. As
δ further increases, the hydrodynamic flow regime is reached and there is no difference between the
various gases. Interestingly, the differences in the heat flux between the various gases are small and
first increase and then decrease with δ. At δ = 0.1, the relative heat flux difference between the HS gas
and Xe is only 1.1%; this increases to 2.5% at δ = 1 and then decreases to 2% by δ = 10. Therefore,
if only the heat flux is of interest, the HS gas model can be safely used, with a numerical error of less
than two percent.

We also consider the variable HS gas with viscosity index ω = 0.66 and 0.85, at δ = 0.1: at
x2 = −0.5, the gas densities are 0.051 and 0.058, respectively. When compared to that of He and Xe,
we find that the variable HS model does not produce significant improvement on the HS model, i.e.,
there are still about 20% and 14% relative differences in gas density and temperature between the
variable HS model and the LJ potential, respectively.

We then consider the nonlinear heat transfer between the two parallel plates by reducing the
temperature of the plate at x2 = −0.5 to T0/2, while that at x2 = 0.5 remains at T0 = 300 K. BE (4) is
solved in an iterative manner,

v2
∂ f (k+1)

∂x2
+ ν(v) f (k+1) = Q+( f (k)), (26)

with the following diffuse boundary conditions:

f (v, x2 = −0.5) = nw1

(πT0/2)3/2 exp
(
−2v2

T0

)
, for v2 > 0,

f (v, x2 = 0.5) = nw2

(πT0)3/2 exp
(
− v

2

T0

)
, for v2 < 0,

(27)

where nw1 = −2
√

2π/T0

v2<0 f v2dv and nw2 = 2

√
π/T0


v2>0 f v2dv .

We compare He and Kr with the HS gas, as the results for Xe are very close to Kr, while the
results for Ne and Ar lie between those for He and Kr. Figure 2 shows the density and temperature
profiles when δ = 0.1 and 1. As in the linear case, the variations in the density and temperature of He
and Kr are steeper than the HS gas, and as δ increases, the differences between He, Kr, and the HS
gas decrease. The heat flux in the HS gas, He, and Xe are, respectively, 0.223, 0.221, and 0.219 when
δ = 0.1; 0.170, 0.168, and 0.159 when δ = 1; and 0.059, 0.056, 0.052 when δ = 10. Unlike the heat
transfer in the linearized case, here the difference in the heat flux between the HS gas and Xe reaches
about 7% at δ = 1 and 13% by δ = 10. This is due to the HS gas having a higher thermal conductivity
near the plate at x2 = −ℓ/2.

B. Planar Couette flow

The geometry is the same as that for the Poiseuille flow in Section IV B, except that the plate at
x2 = −ℓ/2 moves in the x3 direction with a speed Vwall, while the other plate moves in the opposite
direction with the same speed. Also, there is no pressure gradient along the x1 and x3 directions. We
first consider the case when the wall speed is far smaller than the most probable molecular speed
vm; hence, the BE can be linearized to Eq. (8) by expressing the VDF as f = feq + hVwall/vm. The
numerical method is then exactly as that for Fourier flow, except that the diffuse gas-wall boundary
condition becomes h(v, x2 = −0.5) = 2v3 feq for v2 > 0 and h(v1, v2, v3, x2 = 0) = h(v1,−v2,−v3, x2 = 0)
for v2 < 0 due to symmetry. We are interested in the gas velocity and the shear stress. The velocity,
which is normalized by the wall speed, is V3 =


hv3dv; the shear stress, which is normalized by

n0kBT0Vwall/vm, is P23 = 2


hv2v3dv .
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FIG. 2. Density and temperature profiles in the nonlinear Fourier flow between two parallel plates when δ = 0.1 (top row)
and δ = 1 (bottom row). Dashed-dotted lines: HS gas; solid lines: He; dashed lines: Kr.

Figure 3 depicts the typical velocity profiles when δ = 0.1, where the influence of the molec-
ular potential is clearly seen. Table VII lists the gas velocity at the wall and the shear stress for the
different gases when δ = 0.1, 1, and 10. As δ increases, the differences in the velocity profiles of the
six gases decrease. For instance, the relative difference between the HS gas and Xe decreases from
22.3% when δ = 0.1, to 4.5% at δ = 1, and to 0.5% by δ = 10. Similar to heat fluxes in the Fourier
flows, the relative differences in shear stress between the various gases in Couette flow are small and
first increase and then decrease with δ.

FIG. 3. Velocity half-channel profiles in the linearized planar Couette flow of various gases when δ = 0.1.
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TABLE VII. Velocity V3 at the plate and the shear stress P23 in the lin-
earized Couette flow at T0= 300 K.

δ = 0.1 δ = 1 δ = 10

V3 P23 V3 P23 V3 P23

HS 0.157 1.042 0.502 0.681 0.881 0.167
He 0.173 1.038 0.511 0.678 0.882 0.167
Ne 0.179 1.037 0.515 0.677 0.883 0.167
Ar 0.188 1.033 0.522 0.674 0.884 0.166
Kr 0.191 1.031 0.525 0.671 0.885 0.166
Xe 0.192 1.031 0.526 0.670 0.885 0.166

We also consider the variable HS gas with viscosity index ω = 0.85 at δ = 0.1 and compare the
gas velocity at the plate to that Xe. As in the linearized Fourier flow, the variable HS model does not
produce significant improvement when compared to the HS model, as the velocity at the plate is 0.167
for ω = 0.85, so that for Xe the relative difference between the variable HS model and LJ potential
is 15%.

Finally, we consider nonlinear Couette flow, with a wall speed Vwall = vm. The wall temperature
is set to be T0/2. The iterative scheme is the same as in the nonlinear Fourier flow case, see Eq. (26).
The boundary condition is

f (v, x2 = −0.5) = nw

(πT0/2)3/2 exp *
,
−2

v2
1 + v

2
2 + (v3 − 1)2

T0

+
-
, for v2 > 0, (28)

FIG. 4. Half-channel profiles of the density, velocity, temperature, and heat flux in nonlinear Couette flow at δ = 0.1.
Dashed-dotted lines: HS gas; solid lines: He; dashed lines: Xe. The profiles for the variable HS model are not shown, since
for ω = 0.66 and 0.85, the results are close to that of the HS model and He, respectively.
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FIG. 5. Reduced VDFs

f dv1dv3 in the nonlinear Couette flow at δ = 0.1. (a) x2=−0.5 and (b) x2= 0. Dashed-dotted

lines: HS gas; solid lines: He; dashed lines: Xe. Triangles: variable HS model with viscosity index ω = 0.85. The reduced
VDF for the variable HS model with ω = 0.66 is not shown, since it nearly overlaps that of the HS model.

where nw = −2
√

2π/T0

v2<0 f v2dv . At x2 = 0, we have f (v1, v2, v3) = f (v1,−v2,−v3) for v2 < 0 due to

symmetry.
The profiles of macroscopic quantities and reduced VDFs when δ = 0.1 are shown in Figs. 4 and

5, respectively, where we see that the relative difference in gas velocity is close to that in the linearized
Couette flow, and the use of the variable HS model only slightly improves the accuracy. The reduced
VDF also has a relatively large difference between the noble gas and the HS gas at v2 ∼ 0. The shear
stresses in the various gases are, however, very close to each other in nonlinear Couette flow. This is
because the gas temperature is around T0 so the rarefaction parameters are nearly the same. Therefore,
if only the shear stress is of interest, the HS model can be used.

VI. CONCLUSIONS

We have presented a general fast spectral method to solve the Boltzmann equation with arbi-
trary intermolecular potentials. Specifically, through comparison with results from the variational
and discrete velocity methods, we have demonstrated the accuracy of the FSM for realistic (6-12)
LJ potential. As an application, the FSM has been applied to planar Fourier and Couette flows. Our
results indicate that, for the same value of rarefaction parameter, the differences in the heat flux in
Fourier flow, and the differences in the shear stress in Couette flow, are small between various noble
gases. However, differences in other macroscopic quantities, and in the reduced velocity distribution
functions, are large when the rarefaction parameter δ . 1. For instance, when δ = 0.1, the relative
difference in the HS gas and Xe densities in Fourier flow is about 40%, while the relative difference
in velocities in Couette flow is about 22%. In the nonlinear Couette flow considered in this paper, the
relative difference in the reduced velocity distribution functions of the HS gas and Xe can reach 20%
at some velocity grid points. These differences increase when the rarefaction parameter decreases.
We have also found that the variable HS model provides a slightly better result than the HS model.

This is a new numerical method for the Boltzmann equation, and we have also indicated the region
of the rarefaction parameter in which the Boltzmann equation with the hard-sphere potential can be
applied. For linearized and nonlinear problems where temperature does not vary too much, and when
only the heat flux in Fourier flow and the shear stress in Couette flow are required, the hard-sphere
model can be safely adopted. Otherwise, the differential cross section of a realistic intermolecular
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potential should be adopted when the molecular mean free path is comparable to, or larger than, the
characteristic flow length.

Although we have only considered one-dimensional flows here, the computational time required
for the Boltzmann collision operator remains unchanged for two- and three-dimensional flows, as the
molecular velocity space is always three-dimensional. Our proposed numerical method can also be
applied to mixtures of monatomic gases using ab initio potentials.13
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