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The visible matter in the Universe is turbulent and magnetized: turbulence in

galaxy clusters is produced by mergers and by jets of the central galaxies and

believed responsible for the amplification of magnetic fields. We report on ex-

periments looking at the collision of two laser-produced plasma clouds, mim-

icking in the laboratory a cluster merger event. By measuring the spectrum

of the density fluctuations, we infer developed, Kolmogorov-like turbulence.

From spectral line broadening, we estimate a level of turbulence consistent

with turbulent heating balancing radiative cooling, as it likely does in galaxy

clusters. We show that the magnetic field is amplified by turbulent motions,

reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus,

our experiment provides a promising platform for understanding the structure

of turbulence and the amplification of magnetic fields in the Universe.
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Significance statement

Magnetic fields exist throughout the Universe. Their energy density is comparable to the energy

density of the fluid motions of the plasma in which they are embedded, making magnetic fields

essential players in the dynamics of the luminous matter in the Universe. The origin and the

amplification of these magnetic fields to their observed strengths are far from being understood.

The standard model for the origin of these galactic and intergalactic magnetic fields is through

the amplification of seed fields via turbulent processes to the level consistent with current ob-

servations. For this process to be effective the amplification needs to reach a strongly non-linear

phase. Experimental evidence of the initial non-linear amplification of magnetic fields is pre-

sented in this paper.
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In the early universe, matter was nearly homogenously distributed; today, as a result of grav-

itational instabilities, it forms a web-like structure consisting of filaments and galaxy clusters

[1]. The continued mergers of galaxies, filaments, and galaxy clusters inject turbulence into the

intergalactic medium via shocks [2, 3]. At the same time, the existence of diffuse synchrotron

emission at radio wavelengths and Faraday rotation measurements indicate the presence of mag-

netic fields in galaxy clusters with strengths up to tens of µG [4, 5]. The standard model for

the origin of these intergalactic magnetic fields is amplification of seed fields via the turbulent

dynamo mechanism to the present-day observed values [6, 7, 8, 9, 10], but other possibilities

involving plasma kinetic instabilities [11, 12, 13, 14], return currents [15, 16] or primordial

mechanisms [17, 18] have also been invoked.

We have carried out experiments involving the collision of two plasma jets – reminiscent of

cluster merger events – to produce a laboratory-scale replica of a turbulent intracluster plasma,

although obviously our plasma is not confined in a dark matter potential well, as it is in clusters.

In the intracluster medium, large-scale turbulent motions are influenced by density stratification

and gravity. However, at smaller spatial scales the time periods for buoyancy-driven motions

are much longer than those of the turbulent motions, so the fluctuations at these scales are

universal, and thus similar to the turbulence we can create in our laboratory experiments The

scale invariance of hydrodynamic equations [19, 20] implies, if we assume that a distance of

1 cm in the laboratory corresponds to 100 kpc in the astrophysical case, that 1 µs becomes 0.5

Gyr and a density of 4× 1017 cm−3 is equivalent to 0.01 cm−3 in the galaxy cluster.

Our experiments were conducted using the Vulcan laser of the Central Laser Facility at the

Rutherford Appleton Laboratory. We have focussed multiple laser beams (with ∼240 J total

energy and ∼1 ns pulse duration) onto a carbon foil to launch a plasma jet into an ambient

argon gas-filled chamber (at a pressure of 1 mbar). A full description of the experimental set-

up is given in Fig. 1. Ablation of target material by the laser drives a shock into the carbon
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foil, which then produces a collimated jet from the back surface of the target (i.e., the side

opposite to that illuminated by the laser). The target material ablated by the laser is slowed by

the ambient medium, creating a wrap-around shock, visible in Fig. 1. Schlieren measurements

were taken to characterize the outflows at various times. The fastest moving material occurs on

axis (see Fig. 2) with v0 ∼ 25 km/s (v0/cs ∼ 4, where cs is the sound speed) at 3 cm from the

target, while material on the edges of the jet moves more slowly as a result of Kelvin-Helmholtz

shearing instabilities. Experiments were also performed using two sets of laser beams, each set

illuminating a carbon foil, producing two jets that collide. The collision drives strong turbulence

in a region that grows from a size L ∼ 1 cm at t = 0.8 µs to ∼ 2 cm at t > 1.5 µs, at which

time the turbulence reaches a more relaxed state.

The turbulent velocity fluctuations on the system scale L can be estimated from Fig. 2b. At

the collision point, the observed argon emission lines are broadened by ∼0.2 nm. Half of this

broadening is attributed to the increased density, and to a lesser extent to the higher temperatures

(thermal broadening is small due to the large ion mass) – see supplementary material. The

broadening due to turbulent motions is then ∼0.1 nm, corresponding to a turbulent velocity

vturb ≈ 27 ± 5 km/s. Thus, vturb ∼ v0, suggesting that the collision effectively randomizes

the directed velocities of the two jets. Taking the measured values of jet velocity, density, and

temperature in the collision region, and assuming an ionization state Z ∼ 2.5 for argon, we

estimate the inter-jet electron-ion (λei ≈ 0.04 cm) and ion-ion (λii ≈ 0.005 cm) mean free

paths to be significantly smaller than the size of the jets. This confirms that the two jets strongly

interact via Coulomb collisions and the contact surface between the two jets becomes quickly

unstable. The Reynolds number calculated with respect to the scale L is thus Re = vturbL/ν ∼

1.0× 106 (ν ≈ 2.8 cm2/s is the kinematic viscosity of the plasma).

For our plasma conditions the radiative cooling rate per ion is Qcool ∼ mionκPσSBT
4 ∼ 0.5

eV/ns, where mion is the argon mass, κP ∼ 8 × 104 cm2/g is the Planck opacity (see sup-
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plementary information), and σSB is the Stefan-Boltzmann constant. This implies that during

one jet crossing time, ∼L/v0 ≈ 400 ns, the plasma should have cooled to near 1 eV, as in

the case of a single jet expansion (detailed calculations are provided in the supplementary in-

formation). Fig. 2 instead shows that in the collision region the temperature remains &2 eV

over a few L/v0, suggesting that much of the cooling must be offset by heating. Turbulent

motions are eventually dissipated into heat. This heating rate per ion can be approximated to

be Qturb ∼ mionv
3
turb/L ∼ 0.6 eV/ns. Thus Qturb ∼ Qcool, consistent with turbulence playing

an important role in achieving a stable temperature profile, with near balance between turbulent

heating and radiative cooling.

We performed simulations of the experiments using the FLASH code [21, 22] (see sup-

plementary material). The results of the FLASH simulations are consistent with the measured

properties of the jet, including its morphology and the physical conditions in the interaction

region (Figs. 1 and 2). The simulations indicate enhanced vorticity as the two jets collide, and

reproduce the increase in the electron density and the moderate rise in the temperature after the

collision.

In some respects, our experimental conditions are qualitatively similar to those found in

galaxy cluster, where heating driven by turbulent motions in the intracluster plasma reduces

radiative losses and decreases the net cooling rate [23]. On the other hand, while in the inertial

range energy is transferred from one scale to another at a rate given by Qturb, which has the same

form both in clusters and laboratory experiments, the actual mechanism for energy dissipation

into heat can be different. This is dominated by collisional, isotropic viscosity in the laboratory,

whereas in clusters, at a minimum, one must take into account that viscosity is anisotropised

due to magnetic fields and furthermore kinetic processes may play an important role [8]. Thus

the similarity between the laboratory “replica” and the astrophysical reality can only hold at

scales larger than the viscous one.
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During hierarchical structure formation, clusters form from accretion of filaments, galaxies,

galaxy groups, and cluster mergers. In clusters of galaxies, turbulent velocities can be inferred

from the density perturbations, which, in turn, are obtained using the measured X-ray radiation

intensities [23, 24, 25]. The turbulence in clusters is mainly sub-sonic at small scales (and near

sonic at large scales), so density fluctuations (injected at large scales) behave like a passive

scalar. Therefore the density and velocity spectra are expected to be the same [26]. The fact

that turbulence is moderately supersonic in our experiment while sub-sonic in clusters, is likely

to lead to only a a modest change in the power spectra (and at small enough scales, motions

will in any event become sub-sonic). Indeed, spectroscopic observations of supersonic motions

in molecular clouds [27] suggest a velocity power spectrum close to the classical Kolmogorov

k−5/3 law (where k is the wavenumber) that holds for incompressible fluids. Numerical simu-

lations of supersonic turbulence show a spectrum somewhat steeper than Kolmogorov’s, k−1.7

to k−2, depending on the details of the driving mechanism [28]. These differences are smaller

that the uncertainties in our power spectrum measurements.

We have extracted the power spectrum of the electron density fluctuations from our data.

The result is shown in Fig. 3a, using the wavelet method discussed in Ref. [25], which was

used there for the analysis of X-ray maps of the Coma cluster. The spectrum is consistent

with a Kolmogorov-like power law as expected from the theoretical work we discuss above,

suggesting that we do indeed see fully developed turbulence. A similar spectrum was obtained

in galaxy clusters [24, 25].

While Re ≫ 1 and turbulent motions are excited over a large range of scales, the magnetic

Reynolds number is Rm = vturbL/η ∼ 14 (η = 1.9 × 105 cm2/s is the resistivity), so the

resistive scale lies well above the viscous scale, and close to the system scale, L. Since Rm

is not very large in the experiment, the full magneto-hydrodynamic (MHD) scaling between

the cluster and the laboratory is only marginally valid [20]. At such Rm, turbulent dynamo,
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believed to be the mechanism whereby strong fields are generated in galaxy clusters [8, 7], does

not operate, but the magnetic fields can be amplified via stochastic tangling of an imposed field

by turbulent motions [29, 30]. At small Rm (. 1), the amplified field grows proportionally to

Rm and has the Golitsyn [29] k−11/3 power law, which arises in Kolmogorov turbulence when

the stochastic tangling of the magnetic field is balanced by Ohmic diffusion. As Rm gets larger

the scaling of the amplified field gets closer to Rm1/2, and its spectrum becomes shallower [31].

Eventually, there is a transition to the turbulent dynamo regime, expected at Rm∼ 200.

In our experiment, magnetic fields are generated before the collision via the Biermann bat-

tery mechanism [32, 33], which is sustained by the shearing instability between the jet and the

ambient medium. It is this field that is then tangled and amplified by turbulent motions. Fig. 4

shows that the magnetic field is larger by a factor ∼2-3 in the case of collision of the two jets

compared to the unperturbed single jet. The FLASH simulation reproduces the morphology

and time behavior of the magnetic field, including the time at which the field changes sign. We

expect the simulation to underpredict the peak magnetic field in the colliding jets case since

turbulent amplification is not properly captured in 2D geometry.

Most importantly, the amplified magnetic field detected in the experiment is larger than the

Biermann battery produced field. This suggests that amplification has reached the non-linear

regime, with the amplified field roughly proportional to Rm1/2. This conclusion is further sup-

ported by measurement of the magnetic energy spectrum M(ω), shown in Fig. 3b. Translated

into wavenumber spectrum, this spectrum is M(k) ∼ k−17/9 (see the supplementary material),

substantially shallower than the low-Rm Golitsyn spectrum k−11/3 [29], which we observe in

the case of no jet collision, so both less turbulence and lower Rm [10]. The emergence of

progressively shallower magnetic spectra is a sign of nonlinear field amplification, which is a

precursor to turbulent dynamo [31].

Despite important differences, the laboratory simulation of an intracluster plasma that we
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have created offers a new tool for modelling the amplification of magnetic fields by turbulent

astrophysical plasmas.
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Figure Legends

Figure 1: Colliding jet configuration for the generation of turbulence. Two carbon foils (100
µm thick, with density 1.13 g/cm3) are separated by 60 mm in a 1 ± 0.2 mbar argon gas-filled
chamber. Each target is ablated by three frequency doubled (527 nm wavelength) laser beams
with a laser spot diameter of 300 µm. The total laser illumination onto each foil is 240±30 J in a
1 ns pulse length. An induction coil (&200 MHz bandwidth, with four twisted pair coils wound
around the axis of a ∼1×1 mm2 plastic core) is placed at equal distance between the foil targets.
Additional details are given in Ref. [10]. (a) Schlieren image (using a 532 nm wavelength probe
and 5 ns CCD gate width) of the jet formations at t = 500 ns after the laser shot. (b) The jets
collide at t = 800 ns, and (c) turbulence develops by t = 1500 ns. (d) Magnetic field (top)
and mass density (bottom) from a FLASH simulation of the two jets at t = 500 ns. (e) Same
as (d) but at t = 800 ns. (f) same as (d) but at t = 1500 ns. (g) Schlieren synthetic image
obtained by post-processing the FLASH results at t = 500 ns using Spect3D [34]. (h) Same as
(g) but at t = 800 ns. (i) same as (g) but at t = 1500 ns. The measured and simulated Schlieren
images are similar at t = 500 and 800 ns, but differ at t = 1500 ns. The difference is likely due
to a slight angle between the directions the two jets are moving, which allows part of the jets
to continue beyond the initial interaction region. This produces a much larger turbulent region
in the experiment than in the simulation, where the 2D cylindrical geometry prevents us from
accommodating this situation. Since the FLASH simulations are 2D cylindrical, the plane that
most closely corresponds to the experimental data is the one that is perpendicular to the page
and connects the two target foils. This plane does not contain the induction coil probe.
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Figure 2: Characterization of jet propagation and collision. (a) Measurement of the jet lead-
ing edge vs time from Schlieren data (blue symbols) and FLASH simulations (dashed green
line). The FLASH simulation was calibrated to match the position of the leading edge of the jet
at 800 ns for the measured value of the total laser energy for that data point. The inset shows the
electron density profile obtained by interferometry at t = 800 ns compared to FLASH predic-
tions. The density has been averaged over a volume of 5 mm radius from the axis connecting the
two target foils. (b) Spatially resolved electron temperature profile of a single jet (blue symbols)
and colliding jets (red symbols) at t = 800 ns obtained from the measured argon spectral lines
(see supplementary information for details). Solid lines (blue: single jet; and, red: colliding
jets) correspond to the predicted temperature values from FLASH simulations at t = 800 ns,
averaged over the same volume as the electron density. Dashed lines are the results from the
same FLASH simulations at t = 1500 ns. The inset shows an example of the argon spectral line
at t = 800 ns and 3 cm from the carbon foil target (averaged over 0.1 cm).
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Figure 3: Power spectra of turbulence. (a) Plot of the density fluctuation power spectrum
P (k) = |nk/n0|2, where nk is the discrete Fourier transform of the space-dependent electron
density and n0 its average value. In Schlieren imaging, the measured signal intensity is pro-
portional to

∫
(∂n/∂y + ∂n/∂z)dx, where n is the electron density, x,y are the image-plane

spatial co-ordinates and z the depth [35]. Therefore, under the assumption that turbulence is
statistically homogeneous across the jet interaction region, the discrete Fourier transform of the
central region of the jet collision in Fig. 1c directly gives nk. The power spectrum is arbitrarily
normalized so that P (k) ≈ 1 at the largest scale. The solid red curve corresponds to the ex-
perimental data, while the black and green symbols correspond to the inferred density spectrum
in the Coma cluster obtained from CHANDRA and XMM satellite observations, respectively
[25]. (b) Plot of the magnetic energy spectrum M(ω) = |B(ω)|2, where B(ω) is the discrete
Fourier transform of the total magnetic field for both the cases with a single jet (red solid line)
and with colliding jets (blue solid line). The slope of the spectrum in the case of colliding jets
is shallower than in the case of a single jet (where it is consistent with the k−11/3 Golitsyn spec-
trum, assuming conversion from frequencies to wave numbers according to Taylor hypothesis,
ω ∼ v0k). This gradual shallowing of the spectrum with increasing Rm is a signature of the
dynamo precursor regime [31]. The measured frequency spectrum ∼ω−7/3 can be argued to cor-
respond to wavenumber spectrum ∼k−1.9 in the case of colliding jets, where Taylor hypothesis
is inapplicable (see supplementary information).
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Figure 4: Time evolution of the magnetic field. (a) The magnetic field components measured
at 3 cm from the carbon foil in the case of a single jet (see Fig. 1 for the axis co-ordinates).
(b) Magnetic field components measured in the case of jet collision. The time resolution of
the magnetic field traces is 10 ns. These have been extracted from the recorded induction coil
voltages. Details are given in Ref. [10]. The initial (t < 100 ns) high frequency noise due to
the laser-plasma interaction with the target has been filtered. The dashed lines in both panels
correspond to the average azimuthal magnetic field obtained from the FLASH simulations in a
volume of radius 1 mm and length 3 mm centered at the midpoint between the two target foils.
Due to cylindrical symmetry of the simulation domain, the measured component that is closest
to the calculated one is Bz.
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