Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Intervals of permutations with a fixed number of descents are shellable

Smith, Jason P. (2015) Intervals of permutations with a fixed number of descents are shellable. Discrete Mathematics, 339 (1). 118–126. ISSN 0012-365X

Text (Smith-DM-2015-Intervals-of-permutations-with-a-fixed-number)
Intervals_of_Permutations_with_a_Fixed_Number_of_Descents_are_Shellable.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (290kB) | Preview


The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of descents are shellable, and we present a formula for the Möbius function of these intervals. We present an alternative proof for a result on the Möbius function of intervals [1,π] such that π has exactly one descent. We prove that if π has exactly one descent and avoids 456123 and 356124, then the intervals [1,π] have no nontrivial disconnected subintervals; we conjecture that these intervals are shellable.