Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Collective control strategy for a cluster of stall-regulated offshore wind turbines

Hur, S. and Leithead, W.E. (2016) Collective control strategy for a cluster of stall-regulated offshore wind turbines. Renewable Energy, 85. 1260–1270. ISSN 0960-1481

[img]
Preview
Text (Hur-Leithead-RE-2016-Collective-control-strategy-for-a-cluster-of-stall-regulated-offshore)
Hur_Leithead_RE_2016_Collective_control_strategy_for_a_cluster_of_stall_regulated_offshore.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

The power converter is one of the most vulnerable components of a wind turbine. When the converter of an offshore wind turbine malfunctions, it could be difficult to resolve due to poor accessibility. A turbine generally has a dedicated controller that regulates its operation. In this paper, a collective control approach that allows a cluster of turbines to share a single converter, hence a single controller, that could be placed in a more accessible location. The resulting simplified turbines are constant-speed stall-regulated with standard asynchronous generators. Each cluster is connected by a mini-AC network, whose frequency can be varied through a centralised AC-DC-AC power converter. Potential benefits include improved reliability of each turbine due to simplification of the turbines and enhanced profit owing to improved accessibility. A cluster of 5 turbines is assessed compared to the situation with each turbine having its own converter. A collective control strategy that acts in response to the poorest control is proposed, as opposed to acting in response to the average control. The strategy is applied to a cluster model, and simulation results demonstrate that the control strategy could be more cost-effective than each turbine having its own converter, especially with optimal rotor design.