Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Reliability of an all-optical differential current detection technique during environmental temperature perturbations

Fusiek, Grzegorz and Orr, Philip and Niewczas, Pawel (2014) Reliability of an all-optical differential current detection technique during environmental temperature perturbations. In: 2014 IEEE Sensors Proceedings. IEEE, Piscataway, NJ., pp. 1121-1124. ISBN 9781479901616

[img]
Preview
Text (Fusiek-etal-IEEESensors2014-all-optical-differential-current-detection-technique)
Fusiek_etal_IEEESensors2014_all_optical_differential_current_detection_technique.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

The reliability of a novel, all-optical differential current protection scheme over varying environmental conditions is investigated in this paper. By monitoring the optical power reflected from two matched hybrid fiber Bragg grating current sensors and using a simple and low-cost optoelectronic threshold detector, a sub-cycle response to an increase in differential current can be achieved. A preliminary laboratory embodiment is constructed in order to emulate a practical deployment of the sensors and characterize the performance of the scheme when the sensors are at different temperatures. We demonstrate that even at a temperature difference of 20 °C between the sensors the system is capable of robust and fastacting fault detection.