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Summary. Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial
small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial
autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional
autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To
avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized
model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture
step changes in the random effects surface. This methodological development allows us to improve the estimation performance
of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using
a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater
Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide,
whose effects have been consistently attenuated by the currently available globally smooth models.
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1. Introduction
Quantification of the health effects of air pollution is an im-
portant problem of considerable public interest, both in terms
of its financial and health impact. In the UK, the Department
for the Environment, Food and Rural Affairs (DEFRA) esti-
mate that “in 2008 air pollution in the form of anthropogenic
particulate matter (PM) alone was estimated to reduce aver-
age life expectancy in the UK by 6 months. Thereby imposing
an estimated equivalent health cost of £19 billion” (DEFRA
Air Quality Subject Group, 2010). These estimates are based
on large numbers of epidemiological studies, which have quan-
tified the impact of both short-term and long-term expo-
sure. The effects of long-term exposure can be estimated from
individual-level cohort studies such as Laden et al. (2006) and
Beverland et al. (2012), but they are expensive and time con-
suming. Therefore ecological small-area study designs have
also been used, including Elliott et al. (2007), Lee, Ferguson,
and Mitchell (2009), Haining et al. (2010), and Greven, Do-
minici, and Zeger (2011). While these studies cannot assess
the causal health effects of air pollution due to their eco-
logical design, they are quick and cheap to implement, and
they contribute to, and independently corroborate, the body
of evidence about the long-term population level impact of
air pollution.

This ecological design is a form of geographical associa-
tion study, where the study region is partitioned into non-
overlapping areal units, such as counties or census tracts. The
number of disease cases observed in each areal unit is modeled,
using Poisson regression, by risk factors including air pollution

concentrations, socio-economic deprivation, and demography.
However, residual spatial autocorrelation may remain in these
data, due to unmeasured confounding, neighborhood effects
(where individual areal unit’s behavior is influenced by that
of neighboring units) and grouping effects (where individual
units seem to be close to similar units). This autocorrelation is
accounted for by adding a set of random effects to the model,
which are usually represented by a conditional autoregressive
(CAR; Besag, York, and Mollie, 1991) prior as part of a hier-
archical Bayesian model.

The majority of CAR priors are globally smooth, and have
recently been shown by Reich, Hodges, and Zadnik (2006),
Hodges and Reich (2010), Paciorek (2010), and Hughes and
Haran (2013) to be potentially collinear with any covari-
ate such as air pollution that is also globally smooth. Such
collinearity leads to poor estimation performance for the fixed
effects, and additionally suggests that the residual spatial au-
tocorrelation is unlikely to be globally spatially smooth as
that component of the spatial variation in the disease data
will have been accounted for. Instead, the residual spatial
autocorrelation is likely to be strong in some areas showing
smoothness, and weak in some other areas exhibiting abrupt
step changes. The widely used intrinsic and convolution CAR
models proposed by Besag et al. (1991) force the random ef-
fects to exhibit a single global level of spatial smoothness de-
termined by geographical adjacency, and are thus not flexible
enough to capture the complex localized structure likely to
be present in the residual spatial autocorrelation. The lack of
flexibility in the intrinsic and convolution CAR models and
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the collinearity problems highlighted by Hodges and Reich
(2010) and others has motivated us to develop a new localized
conditional autoregressive (LCAR) prior for modeling residual
spatial autocorrelation, which is presented in Section 3. Exist-
ing solutions to these problems have been proposed by Reich
et al. (2006), Hughes and Haran (2013), and Lee and Mitchell
(2013), and a selection of them are compared by simulation
to the LCAR prior proposed in this article in Section 4.

To contain the required flexibility, the LCAR prior captures
localized residual spatial autocorrelation by allowing random
effects in geographically adjacent areas to be autocorrelated
or conditionally independent, and we show that this prior
distribution can have realizations at both spatial smoothing
extremes, namely global smoothness and independence. How-
ever, this flexibility leads to a large increase in the compu-
tational burden and a lack of parsimony causing problems of
parameter identifiability, and a critique of the limitations of
the existing literature in this area is given in Section 2. Here,
we solve these problems with a novel prior elicitation method
based on historical data, which is similar in spirit to power
priors (see Chen and Ibrahim, 2006). Our elicitation is based
on an approximate Gaussian likelihood, and produces a set
of candidate correlation structures for the residual spatial au-
tocorrelation. The LCAR prior combines a discrete uniform
distribution on this set of candidate structures with a modi-
fied CAR prior for the random effects, which combined with
the Poisson likelihood completes a full Bayesian hierarchical
model. Inference is obtained using Markov chain Monte Carlo
(MCMC) methods, and the model allows us to simultaneously
estimate the random effects, their local spatial structure as
well as the fixed effects. We conduct a large simulation study
in Section 4 to show improved parameter estimation when us-
ing the proposed LCAR prior distribution. We follow up this
investigation by analyzing the motivating data set for the city
of Glasgow in Section 5. But first, we present the motivating
data set and discuss the background modeling and prior dis-
tributions in Section 2.

2. Background

2.1. Motivating Study

The study region is the health board comprising the city of
Glasgow and the river Clyde estuary, which in 2011 con-
tained just under 1.2 million people. The region is parti-
tioned into n = 271 administrative units called Intermediate
Geographies (IG), which contain just over 4000 people on av-
erage. The data used in this study are freely available, and
can be downloaded from the Scottish Neighbourhood Statis-
tics (SNS) database (http://www.sns.gov.uk). The response
variable is the numbers of admissions to non-psychiatric and
non-obstetric hospitals in each IG in 2011 with a primary
diagnosis of respiratory disease, which corresponds to codes
J00-J99 and R09.1 of the International Classification of Dis-
ease tenth revision. Differences in the size and demographic
structure of the populations living in each IG are accounted
for by computing the expected numbers of hospital admissions
using external standardization, based on age- and sex-specific
respiratory disease rates for the whole study region. An ex-
ploratory estimate of disease risk is given by the standardized
incidence ratio (SIR), which is the ratio of the observed to

the expected numbers of admissions. It is displayed in the top
panel of Figure 1, and shows that the risks are highest in the
heavily deprived east end of Glasgow (east of the study re-
gion) as well as along the southern bank of the river Clyde,
the latter of which flows into the sea in the west and runs
south east through the study region.

Ambient air pollution concentrations are measured at a
network of locations across Scotland, details of which are
available at http://www.scottishairquality.co.uk/. However,
the network is not dense at the small-area scale required by
this study, so instead we make use of modeled yearly aver-
age concentrations at a resolution of 1 km grid squares pro-
vided by the DEFRA (see http://laqm.defra.gov.uk/maps/).
We use concentrations for 2010 in this study rather than 2011,
because it ensures that the air pollution exposure occurred
before the hospital admissions due to respiratory illnesses.
These modeled concentrations were computed using disper-
sion models and were then calibrated against the available
monitoring data, and further details are available from Grice
et al. (2009). They were subsequently converted to the in-
termediate geography scale by computing the median value
within each IG. Concentrations of carbon monoxide (CO, in
mg m−3), nitrogen dioxide (NO2, in �g m−3), sulfur dioxide
(SO2, in �g m−3) and PM are available for this study, the lat-
ter being measured as both PM10 (particles less than 10 �m
in diameter) and PM2.5 (particles less than 2.5 �m in diam-
eter). The PM10 data are displayed in the bottom panel of
Figure 1, which shows the highest concentrations are in the
center of the city of Glasgow as expected.

A number of other covariates were considered in this study,
the most important of which is a measure of socio-economic
deprivation. The relationship between deprivation and ill
health is well known (e.g., see Mackenbach et al., 1997), and
in this study we use the percentage of people living in each
IG in 2010 who are in receipt of job seekers allowance (JSA).
Other variables we also consider are measures of ethnicity (the
percentage of school children in each IG who are non-white),
access to alternative forms of health care (the average time
taken to drive to a doctor’s surgery) and a measure of urban-
icity (a factor variable with 6 levels, with level one defined as
urban and level six as rural).

2.2. Modeling

The study region is partitioned into n areal units A =
{A1, . . . ,An}, and the vectors of observed and expected num-
bers of disease cases are denoted by Y = (Y1, . . . , Yn) and E =
(E1, . . . , En), respectively. In addition, let X = (xT

1 , . . . ,xT
n )T

denote the matrix of p covariates and a column of ones for
the intercept term, where the values relating to areal unit Ak

are denoted by xT
k = (1, xk1, . . . , xkp). A Bayesian hierarchical

model is typically used to model these data, and a general
specification is given by

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n,

ln(Rk) = xT
k β + φk, (1)

where the disease counts are assumed to be conditionally
independent given the covariates and the random effects.
Here, β = (β0, β1, . . . , βp) denotes the vector of covariate ef-
fects, while Rk represents disease risk in areal unit Ak. A
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Figure 1. Maps displaying the spatial pattern in the standardized incidence ratio for respiratory disease in 2011 (top panel)
and the modeled yearly average concentration (in �g m−3) of PM10 in 2010 (bottom panel).
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value of Rk greater (less) than one indicates that areal unit
Ak has a higher (lower) than average disease risk, and in
terms of interpretation, Rk = 1.15 corresponds to a 15% in-
creased risk of disease. As previously discussed, the ran-
dom effects φ = (φ1, . . . , φn) capture any residual spatial au-
tocorrelation present in the disease data, and are typically
assigned a CAR prior, which is a special case of a Gaus-
sian Markov random field (GMRF). Such models are typi-
cally specified as a set of n univariate full conditional distri-
butions, that is as f (φk|φ−k) for k = 1, . . . , n, where φ−k =
(φ1, . . . , φk−1, φk+1, . . . , φn). However, the Markov nature of
these models means that the conditioning is only on the
random effects in geographically adjacent areal units, which
induces spatial autocorrelation into φ. The adjacency infor-
mation comes from a binary n × n neighborhood matrix W,
where wki equals one if areal units (Ak,Ai) share a common
border (denoted k∼i) and is zero otherwise (denoted k � i).
The intrinsic model (Besag et al., 1991; IAR) is the simplest
prior in the CAR class, and its full conditional distributions
are given by

φk|φ−k, τ
2,W ∼ N

(∑n

i=1
wkiφi∑n

i=1
wki

,
τ2∑n

i=1
wki

)
. (2)

The conditional expectation is the mean of the random ef-
fects in neighboring areas, while the conditional variance is
inversely proportional to the number of neighbors. The joint
multivariate Gaussian distribution for φ corresponding to (2)
has a mean of zero but a singular precision matrix Q(W)/τ2,
where Q(W) = diag(W1) − W, and 1 is an n dimensional
vector of ones. This prior is appropriate if the residuals from
the covariate component of the model, that is ln(Y/E) − Xβ,
are spatially smooth across the entire region, because the par-
tial autocorrelation between (φk, φj) conditional on the re-
maining random effects (denoted φ−kj) is

Corr[φk, φj|φ−kj,W] = wkj√
(
∑n

i=1
wki)(

∑n

i=1
wji)

. (3)

Equation (3) shows that all pairs of random effects relating
to geographically adjacent areal units are partially autocor-
related (wkj = 1), which smoothes the random effects across
geographical borders. The most common extension to the IAR
model to allow for varying levels of spatial smoothness is the
BYM or convolution model (Besag et al., 1991), which aug-
ments the linear predictor in (1) with a second set of inde-
pendent Gaussian random effects with a mean of zero and
a constant variance. A further alternative using a single set
of random effects was proposed by Stern and Cressie (1999),
but this and other extensions have a single spatial autocor-
relation parameter (for the BYM model it is the ratio of the
two random effects variances) that controls the level of spa-
tial smoothing globally across the entire region. Thus, these
models are inappropriate for capturing the likely localized na-
ture of the residual spatial autocorrelation, which may contain
sub-region of spatial smoothness separated by step changes.

A small number of papers have extended the class of CAR
priors to account for localized spatial smoothing, the majority

of which have treated W = {wkj|k∼j, k > j} as a set of binary
random quantities, rather than forcing them to equal one. The
neighborhood matrix is always assumed to be symmetric so
that changing wkj also changes wjk, while the other elements
in W relating to non-neighboring areal units remain fixed at
zero. Equation (3) shows that this allows (φk, φj) correspond-
ing to adjacent areal units to be conditionally independent
or autocorrelated, and if wkj (and hence wjk) is estimated as
zero a boundary is said to exist between the two random ef-
fects. One of the first models in this vein was developed by Lu
et al. (2007), who proposed a logistic regression model for the
elements in W, where the covariate was a non-negative mea-
sure of the dissimilarity between areal units (Ak,Aj). Similar
approaches were proposed by Ma and Carlin (2007) and Ma,
Carlin, and Banerjee (2010), who replace logistic regression
with a second stage CAR prior and an Ising model, respec-
tively. However, these approaches introduce a large number
of partial autocorrelation parameters into the model, which
for the Glasgow data considered here has n = 271 data points
and |W| = 718 partial autocorrelation parameters. Therefore,
full estimation of W as a set of separate unknown parameters
results in a highly overparameterized precision matrix for φ,
and Li, Banerjee, and McBean (2011) suggest that the indi-
vidual elements are poorly identified from the data and are
computationally expensive to update.

A related approach was proposed by Lee and Mitchell
(2012), who deterministically model the elements of W as a
function of measures of dissimilarity and a small number of
parameters, rather than modeling each element as a separate
random variable. However, their approach is designed for the
related fields of disease mapping and Wombling, whose aims
are not, as they are here, to estimate the effects of an expo-
sure on a response. An alternative approach was suggested
by Lee and Mitchell (2013), who propose an iterative algo-
rithm in which W is updated deterministically based on the
joint posterior distribution of the remaining model parame-
ters. However, their algorithm has the drawback that only
an estimate of each wkj is provided, rather than the poste-
rior probability that wkj = 1. Finally, Reich et al. (2006) and
Hughes and Haran (2013) take an alternative approach, and
force the random effects to be orthogonal to the covariates
using a residual projection matrix.

3. Methodology

Our methodological approach follows the majority of the lit-
erature critiqued above, and treats the elements in W relating
to contiguous areal units as a set of binary random quantities.
As CAR priors are a special case of an undirected graphical
model, we follow the terminology in that literature and refer
to W as the set of edges, and further define any edge wkj ∈ W
that is estimated as zero as being removed. Our methodolog-
ical innovation is a LCAR prior, which comprises a joint dis-
tribution for an extended set of random effects φ̃ and the set
of edges W, rather than the traditional approach of assuming
the latter is fixed. We decompose this joint prior distribution
as f (φ̃,W) = f (φ̃|W)f (W), and the next three sub-sections
describe its two components as well as the overall hierarchical
model.
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3.1. Prior Distribution - f (φ̃|W)

The IAR prior given by (2) is an inappropriate model for
φ in the context of treating W as random, because of the
possibility that all of the edges for a single areal unit could be
removed. In this case,

∑n

i=1
wki = 0 for some k, resulting in (2)

having an infinite mean and variance. Therefore we consider
an extended vector of random effects φ̃ = (φ, φ∗), where φ∗
is a global random effect that is potentially common to all
areal units and prevents any unit from having no edges. The
extended (n + 1) × (n + 1) dimensional neighborhood matrix
corresponding to φ̃ is given by

W̃ =
[
W w∗
wT

∗ 0

]
, (4)

where w∗ = (w1∗, . . . , wn∗) and wk∗ = I[
∑

i∼k
(1 − wki) > 0].

Here, I[.] denotes an indicator function, so that wk∗ = 1 if at
least one edge relating to areal unit Ak has been removed, oth-
erwise wk∗ equals zero. Based on this extended neighborhood
matrix, we propose modeling φ̃ as φ̃ ∼ N(0, τ2Q(W̃, ε)−1),
where the precision matrix is given by

Q(W̃, ε) = diag(W̃1) − W̃ + εI. (5)

The component diag(W̃1) − W̃ corresponds to the IAR
model applied to the extended random effects vector φ̃, while
the addition of εI ensures the precision matrix is diagonally
dominant and hence invertible. The requirement for Q(W̃, ε)
to be invertible comes from the need to calculate its deter-
minant when updating W, a difficulty not faced when imple-
menting model (2) because W and hence Q(W) are fixed.
The addition of a small positive constant ε to the diagonal
of the precision matrix has been suggested in this context by
Lu et al. (2007). A sensitivity analysis to different values of
ε was conducted in the simulation study in Section 4, and
the results were robust to this specification. Therefore, we
recommend setting ε = 0.001 when implementing the model.
The full conditional distributions corresponding to the LCAR
model are given by:

φk|φ̃−k ∼ N

(∑n

i=1
wkiφi + wk∗φ∗∑n

i=1
wki + wk∗ + ε

,
τ2∑n

i=1
wki + wk∗ + ε

)

k = 1, . . . , n, (6)

φ∗|φ̃−∗ ∼ N

( ∑n

i=1
wi∗φi∑n

i=1
wi∗ + ε

,
τ2∑n

i=1
wi∗ + ε

)
.

In (6), the conditional expectation is a weighted average of
the global random effect φ∗ and the random effects in neigh-
boring areas, with the binary weights depending on the cur-
rent value of W. This shows that φ∗ acts as a global non-spatial
random effect, which influences the conditional expectation
of any other random effect that corresponds to an areal unit
with at least one edge removed. The conditional variance is
approximately (due to ε) inversely proportional to the num-
ber of edges remaining in the model, including the edge to
the global random effect φ∗. Removing the kjth edge from
W sets wkj (and hence wjk) equal to zero and makes (φk, φj)

conditionally independent, and means that the global random
effect φ∗ is included in the conditional expectation to allow
for non-spatial smoothing. In the extreme case of all edges be-
ing retained in the model (6) simplifies to the IAR model for
global spatial smoothing, while if all edges are removed the
random effects are independent with a constant mean and
variance, which are approximately (again due to ε) equal to
φ∗ and τ2, respectively.

3.2. Prior Distribution – f (W)

The dimensionality of W is NW = 1TW1/2, and as each edge is
binary the sample space has size 2NW . The simplest approach
would be to assign each edge an independent Bernoulli prior,
but as described in Section two this is likely to result in W
being weakly identifiable. Therefore we treat W as a single
random quantity, and propose the following discrete uniform
prior for its neighborhood matrix representation W̃;

W̃ ∼ discrete uniform(W̃
(0)

,W̃
(1)

, . . . ,W̃
(NW)

). (7)

The last candidate value W̃
(NW)

retains all NW edges in
the model, that is wkj = 1 ∀ wkj ∈ W, and corresponds to the

IAR model for global spatial smoothing. Moving from W̃
(j)

to W̃
(j−1)

removes an edge from W, which sets one addi-

tional wkj = wjk = 0. This means that W̃
(0)

contains no edges
and corresponds to independent random effects. Thus, the

set {W̃(j)|j = 1, . . . , NW − 1} corresponds to localized spatial
smoothing, where some edges are present in the model and the
corresponding random effects are smoothed, while other edges
are absent and no such smoothing is enforced. This restric-
tion reduces the sample space of W to being one-dimensional,

because the possible values (W̃
(0)

,W̃
(1)

, . . . ,W̃
(NW)

) have a
natural ordering in terms of the number of edges present in
the model.

We propose eliciting the set of candidate values (W̃
(0)

,

W̃
(1)

, . . . ,W̃
(NW)

) from disease data prior to the study pe-
riod, because such data are typically available and should
have a similar spatial structure to the response. Let
((Y

p

1,E
p

1), . . . , (Y
p
r ,E

p
r )) denote these vectors of observed and

expected disease counts for the r time periods prior to the
study period. The general likelihood model (1) gives the vec-
tor of expectations for the study data as E[Y] = E exp(Xβ +
φ), which is equivalent to ln (E[Y]/E) = Xβ + φ. Then as
φ∼N(0, τ2Q(W̃, ε)−1

1:n), we make the approximation

φ
p

j = ln

[
Y

p

j

E
p

j

]
≈ ln

[
Y

E

]
∼approx N(Xβ, τ2Q(W̃, ε)−1

1:n)

for j = 1, . . . , r. (8)

Based on this approximation, the prior elicitation takes the

form of an iterative algorithm, which begins at W̃
(NW)

(which

retains all edges in the model) and moves from W̃
(j)

to W̃
(j−1)

by removing a single edge from W. The algorithm continues

until it reaches W̃
(0)

, where all edges have been removed. The

algorithm moves from W̃
(j)

to W̃
(j−1)

by computing the joint
approximate Gaussian log-likelihood for (φ

p

1, . . . ,φ
p
r ) based on
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(8). This is given by

ln[f (φ
p

1, . . . ,φ
p
r |W̃

(∗)
)] =

r∑
j=1

ln[N(φ
p

j |Xβ̂, τ̂2Q(W̃
∗
, ε)−1

1:n)],

≈ r

2
ln(|Q(W̃

∗
, ε)1:n|) − nr

2
ln(τ̂2)

− 1

2τ̂2

r∑
j=1

(φ
p

j − Xβ̂)TQ(W̃
∗
, ε)1:n

× (φ
p

j − Xβ̂), (9)

where the constant in the likelihood function has been
removed. This likelihood approximation is calculated for all

matrices W̃
(∗)

that differ from W̃
(j)

by having one additional

edge removed. From this set of candidates, W̃
(j−1)

is equal

to the value of W̃
(∗)

that maximizes the above log-likelihood.
This prior elicitation approach removes edges from W in
sequence conditional on the current value of W, rather than
naively treating each edge independently of the others. How-
ever, this approach requires (9) to be evaluated NW(NW + 1)/2
times, which makes the approach computationally inten-
sive. This computational burden is reduced by estimating

(β̂, τ̂2) by maximum likelihood, that is, based on W̃
(j)

,

β̂ = (XTQ(W̃
(j)

, ε)1:nX)−1XTQ(W̃
(j)

, ε)1:n((1/n)
∑r

j=1
φ

p

j )

and τ̂2 = (1/nr)
∑r

j=1
(φ

p

j − Xβ̂)TQ(W̃
(j)

, ε)1:n(φ
p

j − Xβ̂). In
addition, to speed up the computation of the quadratic form

in (9), the above estimators are based on W̃
(j)

rather than

on each individual W̃
(∗)

.

3.3. Overall Model

The Bayesian hierarchical model proposed here combines the
likelihood (1) with the priors (6) and (7) and is given by

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n,

ln(Rk) = xT
k β + φk, (10)

φ̃ ∼ N(0, τ2Q(W̃, ε = 0.001)−1),

W̃ ∼ discrete uniform(W̃
(0)

,W̃
(1)

, . . . ,W̃
(NW)

),

βj ∼ N(0, 1000) for j = 1, . . . , p,

τ2 ∼ uniform(0, 1000).

Diffuse priors are specified for the regression parameters β

and the variance parameter τ2, while ε is set equal to 0.001.
A sensitivity analysis to the latter is presented in Section 4,
which shows that model performance is not sensitive to this
choice. Inference for this model is based on MCMC simula-
tion, using a combination of Metropolis–Hastings and Gibbs
sampling steps. The spatial structure matrix W̃ is updated
using a Metropolis–Hastings step, where if the current value

in the Markov chain is W̃
(j)

, then a new value is proposed uni-

formly from the set (W̃
(j−q)

, . . . ,W̃
(j−1)

,W̃
(j+1)

, . . . ,W̃
(j+q)

).

Here q is a tuning parameter, which controls the mixing and
acceptance rates of the update. Functions to implement model
(10) as well the prior elicitation are available in the statistical
software R, and are provided in the Supplementary Material
accompanying this article. The increased flexibility provided
by the LCAR model inevitably means that it is more compu-
tationally demanding than the commonly used BYM model.
Specifically, it takes 90% longer to produce the same number
of MCMC samples compared with the BYM model, while the
prior elicitation step takes around 40 s for the Glasgow data
considered here.

4. Simulation Study

This section presents a simulation study, which compares the
performance of the LCAR model proposed here against the
BYM model and the recent innovations proposed by Lee and
Mitchell (2013) for localized spatial smoothing (hereafter re-
ferred to as LM) and Hughes and Haran (2013) for smoothing
orthogonal to the covariates (hereafter referred to as HH). For
the latter, q = 50 basis functions are used, because it is the
default choice in the ngspatial software. However, we applied
the model with a range of different q values, and the results
showed little sensitivity to this value.

4.1. Data Generation and Study Design

Simulated data are generated for the 271 IGs that comprise
the Greater Glasgow study region described in Section 2. Dis-
ease counts are generated from model (1), where the size of the
expected numbers E is varied to assess its impact on model
performance. The log risk surface is a linear combination of a
single spatially smooth covariate acting as air pollution, and
localized residual spatial autocorrelation. The pollution co-
variate is generated as the average of two Gaussian spatial
processes with different ranges, one of which has the same
range and hence is confounded with the localized spatial au-
tocorrelation. Both spatial processes are generated using the
Matérn family of correlation functions, where the smoothness
parameter equals 2.5. The regression coefficient for the covari-
ate is fixed at β = 0.1, while new realizations of the covari-
ate and the residual spatial autocorrelation are generated for
each simulated data set. The residual autocorrelation is also
generated from a Gaussian process with a Matérn correlation
function, where localized spatial structure is induced via a
piecewise constant mean. The template for this is shown in
Figure 2, and only has three distinct values {−1, 0, 1}. These
values are multiplied by a constant M to obtain the expec-
tation, where larger values of M lead to bigger step changes
in the spatial surface. The study is split into nine different
scenarios comprising pairwise combinations of M = 0.5, 1, 1.5
and Ek ∈ [10, 25], [50, 100], and [150, 200]. The size of E quan-
tifies disease prevalence, while M determines the extent of
local rather than global residual autocorrelation (larger val-
ues correspond to more prominent localized structure). Each
simulated data set consists of study data and 3 years of prior
data, which is the number of prior data sets used in the Glas-
gow motivating study. The residual spatial autocorrelation
for the latter is generated by adding uniform random noise
in the range [−0.1, 0.1] to the realization generated for the
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Figure 2. A map showing the piecewise constant mean function (with possible values {−1, 0, 1}) for the random effects that
generate localized spatial correlation in the simulation study.

real data, which mimics the realistic situation where the spa-
tial patterns in the prior and real data are similar but not
identical.

4.2. Results

Five hundred data sets are generated under each of the nine
scenarios and the results are displayed in Figure 3 and Ta-
ble 1, which, respectively, summarize the root mean square
error (RMSE) of the estimated regression parameter and the
coverage and widths of the 95% uncertainty intervals. The
back dots in the figure display the RMSE values for all four
models, while the vertical lines represents bootstrapped 95%
uncertainty intervals based on 1000 bootstrapped samples.
The figure shows that no single model exhibits the lowest
RMSE values for all scenarios, as the LCAR model performs
best in this regard for six scenarios and second best in the
remaining three, while the LM model has the lowest values
for three scenarios. The latter performs well when the mag-
nitude of the localized structure is large (large M), which is
likely to be because it induces localized smoothness only when
there are substantial differences between neighboring random
effects. In contrast, it performs on a par with the BYM model
when the localized structure is less prominent, and is substan-
tially worse than the LCAR model in these situations. The
HH model performs consistently poorly relative to the other
models, which is likely to be because although it induces spa-
tial smoothing orthogonal to the covariates, the smoothing is
global (each basis function is a globally smooth quantity) and
does not allow adjacent areas to have very different values

(step changes). The figure also illustrates the importance of
choosing an appropriate model for spatial autocorrelation, as
reductions in RMSE between the best and worst model range
between 6.3% and 68.3% depending on the scenario. The dif-
ferences between the models can also be substantial, as the
bootstrapped 95% uncertainty intervals for the RMSE often
do not overlap.

Table 1 shows that overall the uncertainty intervals from
the BYM model are closest to their nominal 95% coverage
levels, with values above 90% for all scenarios. The intervals
from the LCAR model are also close to their nominal levels
in most scenarios, with all but three being above 90%. How-
ever, the generally small increases in coverages exhibited by
the BYM model compared to the LCAR model come at the
cost of wider uncertainty intervals, which are between 5.4%
and 38.2% wider depending on the scenario. The coverages
from the LM model are relatively poor in comparison, be-
ing between 67.0% and 92.8%, respectively. Finally, the inter-
vals from the HH model exhibit very poor coverage, which
is likely to be due to both the relatively poor estimation
performance as summarized by Figure 3 and their compar-
atively narrow average widths. RMSE values for the fitted
values EkRk and coverage probabilities for the correspond-
ing uncertainty intervals are displayed in the Supplementary
Material accompanying this article, and show broadly similar
but less dramatic patterns to the results presented here for
the fixed effects. Finally, a sensitivity analysis to the choice of
the diagonally dominant constant ε was conducted, where the
middle values of M = 1 and Ek ∈ [50, 100] were used. Values
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Figure 3. Root mean square errors (RMSE) for the estimated regression parameter β. In each case, the dot represents the
estimated RMSE while the black bars are bootstrapped 95% uncertainty intervals. The models are: (a) BYM, (b) LCAR, (c)
the model of Lee and Mitchell (2013), and (d) the model of Hughes and Haran (2013).

Table 1
Percentage coverages and average widths (in brackets) for the 95% credible intervals for the estimated regression parameter

β. Here LM and HH refer to the models proposed by Lee and Mitchell (2013) and Hughes and Haran (2013)

Model

E M BYM LCAR LM HH

0.5 94.2 (0.204) 92.2 (0.193) 92.8 (0.197) 73.8 (0.131)
[10, 25] 1 94.2 (0.290) 92.8 (0.248) 91.0 (0.266) 53.0 (0.128)

1.5 94.4 (0.392) 93.0 (0.298) 80.0 (0.284) 32.8 (0.122)

0.5 92.6 (0.158) 90.2 (0.134) 86.6 (0.139) 46.2 (0.065)
[50, 100] 1 94.0 (0.257) 89.8 (0.184) 73.8 (0.148) 28.0 (0.063)

1.5 90.8 (0.365) 92.8 (0.236) 79.0 (0.134) 20.4 (0.060)

0.5 94.2 (0.147) 89.6 (0.113) 78.2 (0.099) 31.4 (0.042)
[150, 200] 1 90.2 (0.248) 85.8 (0.165) 67.0 (0.098) 18.0 (0.041)

1.5 92.4 (0.353) 93.0 (0.218) 81.4 (0.087) 12.6 (0.040)
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Table 2
A summary of the overall fit of each model (top panel) and the estimated covariate effects (bottom panel)

Model

BYM LCAR LM HH

DIC 2124.0 (178.5) 2112.4 (173.4) 2115.8 (167.7) 2467.6 (157.1)
Moran’s I −0.025 (0.7078) −0.082 (0.9834) −0.121 (0.9997) −0.089 (0.9909)

JSA 1.304 (1.268, 1.342) 1.283 (1.247, 1.320) 1.306 (1.272, 1.341) 1.318 (1.300, 1.336)
CO 0.997 (0.954, 1.038) 1.011 (0.973, 1.045) 0.998 (0.959, 1.036) 1.021 (1.006, 1.035)
NO2 1.036 (0.998, 1.072) 1.040 (1.012, 1.067) 1.033 (1.003, 1.065) 1.043 (1.028, 1.059)
PM2.5 1.029 (0.991, 1.067) 1.039 (1.007, 1.071) 1.026 (0.989, 1.063) 1.035 (1.021, 1.050)
PM10 1.032 (0.994, 1.071) 1.040 (1.007, 1.073) 1.028 (0.993, 1.064) 1.034 (1.021, 1.048)
SO2 1.009 (0.980, 1.040) 1.016 (0.989, 1.044) 1.010 (0.983, 1.037) 1.010 (0.998, 1.024)

The former includes the DIC (effective number of parameters in brackets) and the Moran’s I statistic applied to the residuals (p-value
in brackets). The estimated covariate effects are presented as relative risks for a one standard deviation increase in each covariates value,
which are JSA (2.78%), CO (0.0076 mg m−3), NO2 (5.0�gm−3), PM2.5 (1.1�g m−3), PM10 (1.5� g m−3), and SO2 (0.48�g m−3). Here,
LM and HH refer to the models proposed by Lee and Mitchell (2013) and Hughes and Haran (2013).

of ε = 0.0001, 0.001, and0.01 were considered, and the results
were robust to this choice.

5. Results from the Glasgow Study

5.1. Modeling

Initially, a simple Poisson log-linear model including the four
non-pollution covariates was fitted to the data, and only JSA
exhibited a significant relationship with respiratory disease
risk. The remaining three covariates were thus removed from
the model, and each of the pollutants were included in sepa-
rate models due to their collinearity. The residuals from these
models exhibited substantial overdispersion, with an estimate
of 3.47 when PM2.5 was included in the model. The presence
of residual spatial autocorrelation was assessed by a permuta-
tion test based on Moran’s I statistic, which yielded a highly
significant p-value of 0.00001. Random effects were thus added
to the model, and we implement the four models compared
in the simulation study. These models induce different types
of spatial smoothing, and include the commonly used BYM
model for global spatial smoothing, the LCAR model pro-
posed here and the proposal of Lee and Mitchell (2013) for lo-
calized spatial smoothing, and the model proposed by Hughes
and Haran (2013) for smoothing orthogonal to the covariates.
Finally, for the LCAR model the prior elicitation was based
on respiratory disease data from 2008 to 2010.

5.2. Results – Model Fit

Posterior inference for all models was based on three par-
allel Markov chains, with the exception being the model
proposed by Lee and Mitchell (2013), which uses integrated
nested Laplace approximations (INLA) instead of MCMC
simulation. These chains were burnt in for a period of 50,000
iterations, by which time convergence was assessed to have
been reached, and then run for an additional 50,000 iterations,
yielding 150,000 samples in total. The results are displayed
in Table 2, which quantifies the overall goodness-of-fit of
the models and the estimated covariate effects. The results
relating to model fit are those where PM2.5 was the pollution
metric, but similar results were obtained for the other pol-
lutants. The goodness-of-fit of each model is summarized by

its deviance information criterion (DIC; Spiegelhalter et al.,
2002), where a smaller value represents a better fitting model.
The table shows that the LCAR model exhibits the best fit
to the data according to the DIC, while the LM model is the
next best in that regard. In particular, both these localized
smoothing models appear to fit the data better than the
global smoothing BYM model, with differences of 11.6 and
8.2, respectively. The HH model exhibits the worst fit to the
data in terms of DIC, which is likely to be because it contains
q = 50 basis functions compared with the 271 random
effects used by the other models. The presence of residual
spatial autocorrelation was then assessed using a Moran’s I
permutation test (based on 10,000 random permutations),
and all four models had removed the spatial autocorrelation
present in the residuals from the covariate only model.

5.3. Results – Covariate Effects

Table 2 also displays the estimated relationships between each
covariate and the response, where all results are presented
as relative risks for an increase of one standard deviation in
each covariates value. The table shows that NO2 and both
PM metrics exhibit substantial effects on respiratory disease
risk, as their estimated relative risks range from 1.026 to
1.043 depending on the pollutant chosen and the model
that was fitted. In contrast, neither CO nor SO2 exhibit any
substantial health impact, as both have relative risks close to
the null risk of one for the majority of the four models. The
estimated relative risks for a single pollutant show consider-
able variation between the four models, which suggests that
the choice of spatial smoothing prior impacts on the fixed
effects estimates. This result thus confirms the results of
Reich et al. (2006), and the simulation study conducted here
suggests that the estimates from the LCAR model are likely
to be the most accurate. Based on those results NO2, PM2.5,
and PM10 exhibit substantial effects on respiratory ill health
(95% credible intervals do not include the null risk of one),
with relative risks of 4.0%, 3.9%, and 4.0%, respectively.
Consistent attenuation of the estimated pollution effects
are observed for the global smoothing BYM model (and
the LM model) compared with the LCAR and HH models,
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Figure 4. Posterior density for the number of edges re-
moved from the model. The three grey lines display the esti-
mates from the individual Markov chains, while the bold black
line displays the combined density from all three chains.

which may be due to the collinearity between the fixed and
random effects. Also noteworthy is the substantially smaller
credible intervals obtained from the HH model compared
with those from the other models, which is consistent with
the simulation study results. Finally, we note that while the
risks estimated in this study are relatively large, they are
broadly in line with existing studies such as Lee et al. (2009)
and Haining et al. (2010). Furthermore, these risks should
not be compared with those estimated from short-term time
series studies, because a fixed �gm−3 increase in a persons
short-term exposure is likely to have a smaller health impact
than the same increase in their exposure over the long-term.

5.4. Results – Localized Residual Spatial Autocorrelation

Figure 4 displays the posterior distribution for the number of
edges removed from the model, where the three grey lines are
chain specific estimates while the bold black line represents
the combined distribution from all three Markov chains. The
figure shows close agreement between the chains, as all three
give similar density estimates. There are 718 edges in total in
the Greater Glasgow region, and the middle 95% of the pos-
terior distribution lies between 171 and 385 of these having
been removed. The figure suggests that while the posterior
variability is relatively wide, there is information in the data
to estimate the number of edges to remove. Specifically, the
posterior distribution is multi-modal, with the largest mode
occurring when 231 edges are removed. The figure also pro-
vides strong evidence that the random effects are neither glob-
ally spatially smooth not independent, as there is no posterior
mass at either end of the range of possible values (0 or 718
edges removed).

6. Discussion

This article has proposed a new LCAR prior for modeling
residual spatial autocorrelation, which is flexible enough to
capture either spatial smoothness or a distinct step change in
the data between adjacent areal units. This flexibility is due
to the treatment of the neighborhood matrix W as a random
quantity, rather than assuming it is fixed based on geograph-
ical adjacency. However, this requires a large number of par-
tial correlation parameters to be estimated, and the resulting
lack of parsimony is overcome by using prior information to

greatly reduce the size and dimensionality of the sample space
for W. The proposed model can estimate a range of localized
spatial autocorrelation structures, as well as patterns that are
globally smooth or independent in space. These residual au-
tocorrelation structures are also unlikely to be collinear to the
fixed effects, because they are elicited from the prior informa-
tion after the covariate effects have been removed.

The simulation study has shown that the LCAR model
exhibits generally superior estimation performance for fixed
effects compared with both the commonly used BYM model
and the recent innovations by Lee and Mitchell (2013) and
Hughes and Haran (2013). It generally estimated the fixed
effects with the smallest RMSE, had coverages only slightly
below their nominal levels, and had narrower credible intervals
than the BYM model. This superior performance is likely to
result from the LCAR model having the flexibility to represent
a range of localized spatial autocorrelation structures, which
by construction are unlikely to be collinear to the estimated
fixed effects. In this sense, it contains the localized spatial
smoothing aspects of Lee and Mitchell (2013), while having
a high likelihood of not producing random effects that are
collinear to the fixed effects as in Hughes and Haran (2013).
The final conclusion from the simulation study is that in-
appropriate control for residual spatial autocorrelation can
greatly retard fixed effects estimation, meaning that its care-
ful modeling is vital even if it is not itself of direct interest.

The epidemiological study presented in this article shows
substantial evidence that particulate air pollution and NO2

are harmful to respiratory health in Greater Glasgow, with
an estimated increase in the population’s disease burden of
around 4% if yearly average concentrations increased by one
standard deviation. However, one must remember that this
is an observational ecological study design, and the results
must not be interpreted in terms of individual level cause
and effect (ecological bias). Even so, as small-area studies are
cheaper and quicker to implement than individual level cohort
studies, they form an important component of the evidence
base quantifying the health effects of long-term exposure to
air pollution.

There are many avenues for future work in this area, includ-
ing the extension of the methodology to the spatio-temporal
domain. In an epidemiological context, the extension of the
present study to the whole of the United Kingdom would be
of interest to policymakers, as it would give the UK govern-
ment a national rather than a regional picture of the extent
of the air pollution problem. In addition, while the motiva-
tion for this article was an ecological regression problem, the
methodology developed will also be directly relevant to the
fields of disease mapping and Wombling, whose aims are to
estimate the spatial pattern in disease risk and to identify any
boundaries in the estimated risk surface.

7. Supplementary Materials

This paper contains on-line supplementary material including
additional simulation results, software (functions in R) to im-
plement the LCAR model, the data used in the Glasgow air
pollution study, and code to partially re-create the analysis
presented in Section 5. These materials are available with this
paper at the Biometrics website on Wiley Online Library.



A Bayesian Localized Conditional Autoregressive Model 429

Acknowledgements

This work was funded by the Engineering and Physical Sci-
ences Research Council (EPSRC) Grant No. EP/J017442/1
and EP/J017485/1, and the data and shapefiles were provided
by DEFRA and the Scottish Government. Finally, the authors
would like to thank the associate editor and two reviewers
whose comments improved the content and presentation of
this paper.

References

Besag, J., York, J., and Mollie, A. (1991). Bayesian image restora-
tion with two applications in spatial statistics. Annals of the
Institute of Statistics and Mathematics 43, 1–59.

Beverland, I. J., Robertson C., Yap C., Heal M. R., Cohen
G. R., Henderson D. E. J., Hart C. L., and Agius R. M.
(2012). Comparison of models for estimation of long-term
exposure to air pollution in cohort studies. Atmospheric En-
vironment 62, 530–539.

Chen, M.-H. and Ibrahim J. G. (2006). The relationship between
the power prior and hierarchical models. Bayesian Analy-
sis 1, 551–574.

DEFRA Air Quality Subject Group (2010). Air Quality Appraisal
– Valuing Environmental Limits. Department for the Envi-
ronment, Food and Rural Affairs, London.

Elliott, P., Shaddick G., Wakefield J. C., de Hoogh C., and Briggs
D. J. (2007). Long-term associations of outdoor air pollution
with mortality in Great Britain. Thorax 62, 1088–1094.

Greven, S., Dominici F., and Zeger S. (2011). An approach to
the estimation of chronic air pollution effects using spatio-
temporal information. Journal of the American Statistical
Association 106, 396–406.

Grice, S., Cooke S., Stedman J. R., Bush T. J, Abbott J., and Kent
A. J. (2009). UK air quality modelling for annual report-
ing 2007 on ambient air quality assessment under Council
Directives 96/62/EC, 1999/30/EC and 2000/69/EC. AEA
Technology.

Haining, R., Li G., Maheswaran R., Blangiardo M., Law J., Best
N., and Richardson S. (2010). Inference from ecological mod-
els: Estimating the relative risk of stroke from air pollution
exposure using small area data. Spatial and Spatio-temporal
Epidemiology 1, 123–131.

Hodges, J. S. and Reich B. J. (2010). Adding spatially correlated
errors can mess up the fixed effect you love. The American
Statistician 64, 325–334.

Hughes, J. and Haran M. (2013). Dimension reduction and allevia-
tion of confounding for spatial generalized linear mixed mod-

els. Journal of the Royal Statistical Society, Series B 75,
139–159.

Laden, F., Schwartz J., Speizer F. E., and Dockery D. W. (2006).
Reduction in fine particulate air pollution and mortal-
ity. American Journal of Respiratory and Critical Care
Medicine 173, 667–672.

Lee, D., Ferguson C., and Mitchell R. (2009). Air pollution and
health in Scotland: A multicity study. Biostatistics 10, 409–
423.

Lee, D. and Mitchell R. (2012). Boundary detection in disease map-
ping studies. Biostatistics 13, 415–426.

Lee, D. and Mitchell R. (2013). Locally adaptive spatial smooth-
ing using conditional autoregressive models. Journal of the
Royal Statistical Society, Series C 62, 593–608.

Li, P., Banerjee S., and McBean A. M. (2011). Mining boundary
effects in areally referenced spatial data using the Bayesian
information criterion. Geoinformatica 15, 435–454.

Lu, H., Reilly C. S., Banerjee S., and Carlin B. P. (2007). Bayesian
areal wombling via adjacency modelling. Environmental and
Ecological Statistics 14, 433–452.

Ma, H. and Carlin B. P. (2007). Bayesian multivariate areal
wombling for multiple disease boundary analysis. Bayesian
Analysis 2, 281–302.

Ma, H., Carlin B. P., and Banerjee S. (2010). Hierarchical and
joint site-edge methods for medicare Hospice Service Region
Boundary analysis. Biometrics 66, 355–364.

Mackenbach, J. P., Kunst A. E., Cavelaars A. E. J. M., Groenhof
F., and Geurts J. J. M. (1997). Socioeconomic inequalities
in morbidity and mortality in western Europe. Lancet 349,
1655–1659.

Paciorek, C. J. (2010). The importance of scale for spatial-
confounding bias and precision of spatial regression estima-
tors. Statistical Science 25, 107–125.

Reich, B. J., Hodges J. S., and Zadnik V. (2006). Effects of residual
smoothing on the posterior of the fixed effects in disease-
mapping models. Biometrics 62, 1197–1206.

Spiegelhalter, D. J., Best N. G., Carlin B. P., and Van der Linde
A. (2002). Bayesian measures of model complexity and fit.
Journal of the Royal Statistical Society, Series B 64, 583–
639.

Stern, H. and Cressie N. A. (1999). Disease mapping and risk assess-
ment for public health. In Inference for Extremes in Disease
Mapping, A. Lawson, D. Biggeri, E. Boehning, E. Lesaffre,
J. Viel, and R. Bertollini (eds) Chichester: Wiley. pp. 61–82.

Received May 2013. Revised January 2014.
Accepted January 2014.


