
A Multidirectional Physarum Solver for the
Automated Design of Space Trajectories

Luca Masi
Mechanical & Aerospace Department

University of Strathclyde
Glasgow, UK, G11XJ

Email: luca.masi@strath.ac.uk

Massimiliano Vasile
Mechanical & Aerospace Department

University of Strathclyde
Glasgow, UK, G11XJ

Email: massimiliano.vasile@strath.ac.uk

Abstract—This paper proposes a bio-inspired algorithm
to automatically generate optimal multi-gravity assist trajec-
tories. The multi-gravity assist problem has some analogies
with the better known Traveling Salesman Problem and can
be addressed with similar strategies. An algorithm drawing
inspiration from the Physarum slime mould is proposed to
grow and explore a tree of decisions that corresponds to the
possible sequences of transfers from one planet to another.
Some examples show that the proposed bio-inspired algorithm
can produce solutions that are better than the ones generated
by humans or with Hidden Genes Genetic Algorithms.

I. INTRODUCTION

A gravity assist manoeuvre exploits the gravity of a
planet to change the velocity of a spacecraft. As a result, sub-
stantial modifications of the orbital motion of the spacecraft
can be obtained without the use of its propulsion system. An
optimal sequence of gravity assist maneuvers can make chal-
lenging targets, like Saturn, accessible. The effectiveness of a
sequence of gravity assist maneuvers depends on the choice
of the planets (called swing-by planets in the following)
and of the timing of the encounters with each planet. The
problem of finding the sequence of planets and encounter
dates (including resonances, or multiple encounters with the
same planet) that provides the best transfer to a target object
is a challenging combinatorial problem, referred to as the
MGA problem, or MGAP, in this paper.

Deterministic algorithms for the solution of the MGAP
are based on simplified models and an enumerative search
like PAMSIT [1], or a two stage approach in which a list
of possible sequences is derived from an analysis of the
Tisserand’s graph or from simple energetic considerations
[2] and a search for optimal dates is then performed with
a branch and prune type of procedure for each of the
sequences.

Bio-inspired techniques for the solution of the MGAP
can be found in [3], [6], [5]. In [3] the authors proposed a
hybrid branch & prune and evolutionary process that could
automatically generate sequence and optimal multi-gravity
assist transfer with Deep Space Maneuvers (DSM’s) in a
single loop. In [6] and [5] the problem is approached by
using Hidden Genes Genetic Algorithms (HGGA) where
each sequence is represented by a binary chromosome. The
generation of an optimal solution goes through two loops:

an outer loop and an inner loop. The outer loop generates
the sequence of planets through a Hidden Genes Genetic
Algorithm. The inner loop takes the sequence generated by
the outer loop and computes an optimal set of encounter
dates. Previous work by Ceriotti and Vasile [4] showed the
potentiality of Ant Colony Systems at effectively solving
the MGAP. The MGAP is translated into a planning and
scheduling problem in which a solution is incrementally built
with a modified Ant Colony Optimization algorithm.

The bio-inspired heuristic presented in this paper takes
inspiration from the behaviour of a simple amoeboid or-
ganism, the Physarum Polycephalum, that is endowed by
nature with simple heuristics that can solve complex discrete
decision making problems. For example, it was shown that
the Physarum Polycephalum is able to find the shortest
path through a maze [9], recreate the Japan rail network,
reproduce the designed highway network among several
Mexican cities [7], solve multi-source problems with a
simple geometry [8], [10], mazes [11] and transport network
problems [11].

The algorithm presented in this paper is first applied
to the solution of the classic Traveling Salesman Problem
(TSP), and then to two instances of the MGA problem: a
simple energy-based two dimensional problem without con-
sidering the actual ephemerides of the planets, and a more
complex three dimensional problem with real ephemerides.

II. MULTI-DIRECTIONAL DISCRETE DECISION
MAKING

Fig. 1. Figure showing a simple graph: thicker arrows represent higher
fluxes. In this example Q12 > Q13 ⇒ P12 > P13.

The mathematical model of the Physarum’s decision
making process is composed of two main parts: decision
network exploration and decision network growth in



Fig. 2. Figure showing ramification towards a new node (a) and matching
between decision paths in DF and BF (b).

multiple directions. They are presented in this section
along with a restart procedure that mitigates the risk
of stagnation. The pseudocode of the multidirectional
incremental modified Physarum solver is provided in
Algorithm 1.

1) Decision network exploration: The flux through the
net of Physarum veins can be modelled as a classical Hagen-
Poiseuille flow in cylindrical ducts with diameter variable
with time [8], [10], [11]:

Qij =
πr4ij
8µ

∆pij
Lij

(1)

where Qij is the flux between i and j, µ is the dynamic
viscosity, rij the radius, Lij the length and ∆pij the pressure
gradient. These quantities are shown in the simple graph in
Fig. 1. A variation in the diameter of the veins allows for
a change in the flux. The dilation of the veins due to an
increase in the flowing nutrients can be modelled using a
monotonic function of the flux:

d

dt
rij

∣∣∣∣
dilation

= f (Qij) (2)

where f(0) = 0 , i.e., linear, sigmoidal, etc. It can be
assumed that the dynamics of the veins is sufficiently slow
for the flow to be considered in steady state [10] regime.
The contraction of the veins, due to evaporative effects, can
be assumed to be directly proportional to their radius:

d

dt
rij

∣∣∣∣
contraction

= −ρrij (3)

where ρ ∈ [0, 1] is a pre-defined evaporation coefficient.

The probability associated with each vein connecting i
and j is then computed using a simple adjacency probability
matrix based on fluxes:

Pij =

{
Qij∑

j∈Ni
Qij

if j ∈ Ni

0 if j /∈ Ni
(4)

where Ni is the set of neighbouring veins to a node i.

TABLE I. SETTING PARAMETERS FOR THE MODIFIED PHYSARUM
SOLVER

m Linear dilation coefficient, see Eq. (6).
ρ Evaporation coefficient, see Eq. (3).
GF Growth factor, see Eq. (5)
Nagents Number of virtual agents.
pram Probability of ramification, see Sec. II.
λ Weight on ramification, see Eq. (8).

Algorithm 1 Multidirectional Incremental Physarum Solver
1: initialize m, ρ, GF , Nagents, pram, λ
2: for each generation do
3: for each virtual agent in all directions (DF and BF )

do
4: if current node ̸= end node then
5: if ν ∈ U(0, 1) ≤ pram then
6: using Eq. (8) create a new decision path,

building missing links and nodes
7: else
8: move on existing graph using Eq. (4).
9: end if

10: end if
11: end for
12: look for possible matchings, see Sec. II.
13: contract and dilate veins using Eqs. (2), (3), (5)
14: if rij exceeds upper radius limit, see Eq. (7) then
15: block radius increment
16: end if
17: update fluxes and probabilities using Eqs. (1), (4)
18: if restart condition then
19: update veins’ radii using Eq. (9)
20: update fluxes and probabilities using Eqs. (1), (4)
21: end if
22: end for

A further term in the dilation process was added in
the algorithm and takes inspiration from the behaviour of
the amoeba Dictyostelium discoideum. In its aggregative
and slug stages, amoebae are chemotactically sensitive to
a chemical known as cyclic Adenosine Monophosphate
(cAMP). A starving pacemaker amoeba starts to emit cAMP,
that is a call for aggregation and subsequent collective
behaviour. In a computational algorithm, pacemaker can be
considered the agent with best objective function. A linear
dilation for the pacemaker, which is defined as the best path
so far in the decision graph in terms of objective function,
was here chosen:

d

dt
rijbest

∣∣∣∣
elasticity

= GFrijbest (5)

where GF is the growth factor of the best chain of veins
and rijbest the veins’ radii. This pacemaker call can be
interpreted as a variable elasticity of the veins with time: best
veins increase their capacity of dilation with a percentage
GF . This is an additive term in the veins’ dilation process,
whose first main term is expressed in Eq. (2).

The set of Eqs. (1)-(4) can be implemented following
the method proposed in [8] and resembles classical Ant
Colony Optimization algorithms. Nutrients inside veins are
interpreted as virtual agents that move in accord with the
adjacency probability matrix in Eq. (4) on the existing graph,
see line 8 of Algorithm 1. In accordance to Eq. (1), the



flux in each vein is proportional to the fourth power of the
radius and inversely proportional to the length. Once a vein
is selected by a virtual agent in a generation, its radius is
incremented using Eq. (2). In the present work, a function
linear with respect to the product between the radius r

(k)
ij of

the veins traversed by agent k, and the inverse of the total
cost of the decision taken by agent k, i.e., the total length
L
(k)
tot , will be used for the veins’ dilation:

d

dt
r
(k)
ij

∣∣∣∣
dilation

= m
r
(k)
ij

L
(k)
tot

(6)

where the coefficient m is here called linear dilation coef-
ficient. Evaporation is taken into account using Eq. (3) for
each agent. Fluxes are then calculated using Eq. (1) and
probabilities are updated in accordance with Eq. (4). This
mechanism of veins’ diameter and flux updating corresponds
to line 13 of Algorithm 1, where Eq. (5) contributes to
the veins’ growth of the pacemaker. An upper limit on the
maximum vein radius was introduced in order to avoid veins’
flux explosion and limit the converge rate. If the radius rij
exceeds a maximum value rmax, the vein dilation is stopped
until the radius returns again below rmax for the effect of
evaporation. This upper limit, called kexplosion, is given as
the ratio between rij and rini:

kexplosion =
rij
rini

(7)

where rini is the initial radius of the veins. This mechanism
corresponds to lines 14 to 16 of Algorithm 1.

2) Unidirectional Growth of the Decision Network: The
incremental growth of the decision network in one direction
is performed in parallel by a set of virtual agents. At every
node of the tree, each agent either generates a new branch
or moves along an existing one. At each node, the agent
has a probability pram of ramification towards new nodes
that are not yet linked with the current one. On line 5 of
Algorithm 1, a random number ν is drawn from a uniform
distribution U(0, 1) and the condition ν < pram is verified.
Assuming that the agent is at node i, if ramification is the
choice, the agent evaluates the set of possible new branches
and assigns a probability pij of constructing a new link from
the current node i to a new possible node j ∈ N̄i, where N̄i

is the set of unlinked nodes (for example nodes 4 and 5 in
Fig.2(a)), according to:

pij ∝
1

Lλ
ij

(8)

where λ is a pre-defined exponent. Fig. 2(a) shows a possible
ramification from the start node: dotted lines represent
feasible branches not yet existing. If an agent is at the start
node it has a probability pram of ramification towards the
unlinked nodes 4 and 5. If the agent decides to create a new
link, a new node is selected according to Eq. (8), see line 6
of Algorithm 1.

If a set of linked nodes is available, the agent can decide,
with probability 1− pram, to traverse the existing branches
in the neighborhood Ni (see line 8 of Algorithm 1). In the
case shown in Fig. 2(a) when an agent is at the start node, it
can explore the already linked nodes 2 and 3. Once at node
2 or 3 the only possibility in order to complete the decision

path is a new link construction between the current node
and ending node.

3) Multidirectional Growth of the Decision Network:
If multiple Physarum are simultaneously grown, one can
explore the decision space from multiple directions. Here a
bi-directional approach is presented in which two Physarum,
called DF and BF, form a network made of two superposed
graphs. While growing, the two expanding Physarum have
the possibility of matching decision sequences: agents can
build and traverse arcs that connect nodes belonging to
DF and BF Physarum respectively forming a single path
from the heart of one Physarum to the heart of the other
Physarum, see line 12 of Algorithm 1.

Figure 2(b) shows a simple case of matching between
the graphs associated to two amoebae. The matched decision
path is given by the union of a route in the DF and one in
the BF through a matching arc. Several types of matching
strategies were implemented and tested. The most promising
strategy proceeds as follows: the best nseq BF and DF partial
routes are taken and each DF route communicates with each
of the BF routes. The communication process randomly
selects a pair of nodes along the two routes and tries to
connect the two nodes with a matching arc.

In the following, the top 10 routes generated in DF and
BF are matched assuming an equal probability of cutting
any of the arcs.

4) Restart Procedure: A restart procedure was added to
mitigate the risk of stagnation at local minima. If a certain
condition, here called restart condition, is reached, the veins’
radii are reset to:

rij = rini (9)

The restart procedure is based on the number of nodes
and arcs in common between two decision sequences: after
comparing all decision sequences among each other, if the
minimum number of nodes in common ncom

min exceeds a
threshold nshare, the algorithm is restarted. The restart
procedure is summarised at lines 18 to 21 of Algorithm 1.

The main parameters of the modified Physarum solver
are summarized in Table I. The initial radius of the veins
rini is always set equal to 1 in the simulations presented in
this paper. The complete pseudocode of the multidirectional
incremental modified Physarum solver is provided in Algo-
rithm 1. The unidirectional algorithm is a special case of the
multidirectional algorithm, obtained by freezing the BF, i.e.,
flux and graph growth are allowed in only one direction.

III. APPLICATION TO THE TSP

The TSP, a classical problem in combinatorial optimiza-
tion, was used as benchmark for the performance eval-
uation of the modified unidirectional and multidirectional
Physarum algorithms. Given a set Ncities cities whose
reciprocal distance l is known, the TSP is the problem of
finding the shortest tour that visits each city exactly once.
TSPLIB [16] was used to benchmark the proposed Physarum
algorithm on the TSP problem. In particular, Fig. 3 shows
a comparison between the multidirectional and the unidi-
rectional modified Physarum solver for the TSP test cases
Eil51 from TSPLIB, featuring 51 cities. Setting values are



0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s 

R
at

e

Function evaluations

 

 

D
D&B

Fig. 3. Variation of the success rate with the number of function
evaluations - Eil51 TSP test case.

m = 5× 10−3, ρ = 10−4, GF = 5× 10−3, Nagents = 100,
pram = 1, λ = 0. The value kexplosion = 5, see Eq. (7)
and restart with nshare = dim

2 were selected, where dim
is the number of cities. Fig. 3 reports the success rate (i.e.,
more runs successfully converge to the known best solution)
over 200 independent runs and show that the multidirectional
modified Physarum algorithm with matching ability (D&B)
provides higher success rate than the unidirectional modified
Physarum algorithm (D) when applied to TSP problems.
In particular for Eil51 the gain using D&B instead of D
reaches approximately 20% at 3× 107 function evaluations.
It should be noted that there is an initial transient phase
where the performance of the multidirectional solver do not
exceed the performance of the unidirectional solver because
the two expanding Physarum cause an initial increase in the
number of function evaluations while the growth of the veins
is still low. After this initial transient, the two Physarum start
to reduce the search space and the role of communication
becomes crucial.

A. Comparison with Other Algorithms

Although the idea of this paper is to show that mul-
tidirectionality increases the performance of the Physarum
algorithm, a comparison with known and tested algorithms is
proposed in the following. Note that the Physarum algorithm
does not contain either tailored heuristics for TSP or local
optimization heuristics, like 2-opt [18], or static or dynamic
candidate lists [15], [14]. For this comparative test the
Physarum was applied to the solution of problems Eil51,
Eil76, Eil101, Kroa100 and Rat195 of the TSBLIB.

1) ACS, MMAS, KniesG, KniesL, SA for TSP.: For this
set of comparative tests, mean, best and standard deviation
are used as performance indicators, see Table II and Ta-
ble III, in order to have a fair comparison with the results
in the literature. Values in Table II for the ACO-inspired
algorithms are from [14], [15]. ACS is an implementation
of Ant Colony System, while MMAS is a Max-Min Ant
System algorithm, which is considered the state of the art of
ACO-inspired algorithms. Table II shows that the proposed
Physarum algorithm is comparable to state of the art ACS
algorithms. The values in Table III are from [17]. KniesG
refers to Kohonen Network Incorporating Explicit Statistics
Global [12], KniesL to its local version [12], while SA

TABLE II. TSP BENCHMARK USED IN [14] WITH MEAN VALUE,
STANDARD DEVIATION AND BEST VALUE AT 3× 107 FUNCTION CALLS)

Physarum MMAS ACS
D&B

Eil51
mean 426.8 427.2 428.1
variance 0.92 1.13 2.48
best 426 426 426
Kroa100
mean 21352.9 21352.1 21420.0
variance 94.7 50.3 141.7
best 21282 21282 21282

ACS is from [14], 15 runs performed. MMAS is from [15], 25
runs performed. Physarum, 25 runs performed for Kroa100, 200
for Eil51.

TABLE III. TSP BENCHMARK FROM [17], MEAN VALUE AT 107

FUNCTION CALLS

Physarum KniesG KniesL SA
D&B

Eil51 427.8 438.2 438.2 435.9
Eil76 543.7 567.5 564.8 567.8
Eil101 649.8 664.4 658.3 665.1
Rat195 2397.0 2599.9 26073.0 2631.7

KniesG, KniesL, SA are from [17], runs performed n/a. Physarum,
200 runs performed.

indicates Simulated Annealing [13]. The results in this table
demonstrate the superior ability of the Physarum algorithm
at finding good solutions for the test cases Eil51, Eil76,
Eil101 and Rat195.

IV. MGAP 2D ENERGY MODEL

The MGAP is here formulated as a simple planar tra-
jectory model. The motion of planets and the spacecraft is
assumed to occur in a plane. The orbits of all the planets are
assumed to be circular. The swing-by of a planet is assumed
to produce an instantaneous variation of the velocity of the
spacecraft with respect to the Sun. The variation of the
velocity is only due to the gravity of the planet and no
propelled maneuvers are considered in this model (see [1]
for more details).

Given a sequence of planetary encounters {A,B, ...}, the
modulus v∞,L and the direction β of the velocity vector of
the spacecraft with respect to the velocity Vp of planet A
at departure, the spacecraft follows an orbit with, at most,
two intersections with the orbit of the following planet in
the sequence (see Fig. 4). With reference to Fig. 4, if Planet
A is the Earth and the launch happens at 4, then, if no
resonances are considered, at most two possible transfer arcs
are possible: 4-1 and 4-2. This is true for each transfer
between two planets. Note that planets are assumed to
always be at the intersection points thus no actual phasing
is considered.

For each intersection, two different swing-by’s are pos-
sible with two outgoing velocities. Hence each planet-to-
planet sequence leads to four possible outgoing velocities
and therefore four possible outgoing branches. Resonances
are taken into account by introducing a further discrete
parameter that defines the number of complete revolutions
around the Sun (limited to 2 in the following). Each inter-
section, including resonances, represents a node in the tree



Fig. 4. Initial conditions and different transfers on the same orbit.

TABLE IV. SUCCESS RATE: PHYSARUM, PHYSARUM D&B. EARTH
TO JUPITER TRANSFERS: EJ7 (v∞,L = 7km/s, α = 1.5π), EJ5

(v∞,L = 5km/s, α = 1.5π)

Success Rate
Instance EJ5 EJ7
Func. eval. 5000 , 30000 5000 , 30000
Physarum 0.66 0.80 0.16 0.81
Physarum D&B 0.45 0.93 0.55 0.94

Relative Simulation Time
Instance EJ5 EJ7
Func. eval. 30000 30000
Physarum 1 1
Physarum D&B 0.74 0.68

in Fig. 2. For the solution of this particular instance of the
MGAP, the decision tree is built only forward while it is
explored both forward and backward. The matching process
links complete paths explored backwards to partial paths
generated and explored forward.

The cost of each transfer from intersection i to inter-
section j is the time of flight ToFij and the total objective
function, to be minimised, is the total time of flight ToFtot.
The Physarum algorithm is applied by replacing L

(k)
tot in

Eq. (1) and Lij in Eq. (6) respectively with ToF
(k)
tot and

ToFij . The length of the sequence of planets is bounded
from above with an upper limit of 4 consecutive swing-by’s.

The Physarum and the Multidirectional Physarum solvers
were tested on two instances of the Earth to Jupiter transfer
problems, named respectively EJ5 and EJ7. The EJ5 transfer
has a departure velocity v∞,L = 5 km/s with a departure

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Function Evaluations

S
uc

ce
ss

 R
at

e

Earth−Jupiter, 7 km\s

 

 

Branch and Cut (@ best)
Branch and Cut (@ best) limit
Physarum
Physarum D&B
Physarum, multiple repetitions
Physarum D&B, multiple repetitions

Fig. 5. Success rate: Physarum, Physarum D&B and Branch & Cut. Earth
to Jupiter transfer EJ7, v∞,L = 7km/s, α = 1.5π.

angle β = 1.5π, while the EJ7 has a departure velocity
v∞,L = 7 km/s and a departure angle β = 1.5π. The
pericentre altitude for the swing-by’s of Mercury, Venus,
Earth, Mars and Pluto is 200 km , while it is 5 Jovian radii
for Jupiter, 2 planetary radii for Saturn, and one planetary
radius for Uranus and Neptune.

The parameters of the Physarum solver, for this and
the following test case, were set as follows: m = 0.005,
ρ = 0.0001, GF = 0.005, Nagents = 20, pram = 0.6,
λ = 0, kexplosion = 5, Qmax = 30. For this and all the
cases in the remainder of this paper nshare = ∞. Both the
unidirectional and multidirectional algorithms were run for
200 times on each of the two problems for a number of
function evaluations that ranged between 5000 and 100000.
It is important to recall that one function evaluation is the
evaluation of a single arc connecting two nodes in the search
tree in Fig. 2.

The best solution found by both Physarum solvers is the
sequence of planets EVVEMJ (Earth, Venus, Venus, Earth,
Mars, Jupiter) both for EJ7 and EJ5 with cost 1.48 and
1.38 years, and is in line with the results obtained with the
exhaustive search presented in [1].

Table IV shows that the success rate for the multidirec-
tional solvers is 10% higher, at 30000 function evaluations,
and more than 20% higher, at 5000 function evaluations,
than the unidirectional solver. Furthermore, the Physarum
D&B algorithm is around 30% faster, thanks to the match-
ing approach that rapidly combines and discovers optimal
sequences.

Fig. 5 shows the success rate for the unidirectional,
multidirectional and a deterministic branch & cut algorithm.
The branch & cut algorithm builds the tree of sequences in a
manner similar to the unidirectional solver but cuts branches
when the partial value of the objective function is already
above the best value of the objective function for a complete
transfer. Fig. 5 shows that the success rate of the branch &
cut algorithm is zero up to a minimum number of function
evaluation after which it jumps to 1. The switching point
from 0 to 1 is reached at around 55000 function evaluations
while the Physarum algorithm finds good solutions for any
number of function evaluations, with an 93% success at
30000 function evaluations.

The figures show also the extrapolated success rate of the
two algorithms assuming that the algorithm is run multiple
times for a constant number of function evaluations. The
extrapolation is computed by considering the probability of
success that the algorithm would have if it was launched
multiple times for 30000 function evaluations each time. The
probability of success is 1 − pn30, where the probability of
failure at 30000 function evaluations is p30 and n, in this
case, is the number of repetitions.

Note that, if each planet-encounter time pair was a
city in a TSP, each planet could be revisited K times
and NP planets were available per each encounter, then
the maximum length of a sequence would be KNP and
the number of alternative complete trajectories would be
(KNP )

(4KNP ).



A = Departure Planet

B = First Swing-by Planet

TA1 = Departure Time

1

A
A T

1

B
B T

2

B
B T

B

jB T

Fig. 6. Formulation in position for transfers between two planets.

V. MGAP 3D LAMBERT MODEL

In this section, the MGAP is modelled using the actual
ephemerides of the planets. Given two planets, A and B, and
the dates TA

i and TB
j at which the spacecraft is at planet A

and B, the solution of the Lambert’s problem gives the conic
arc connecting the two planets and the associated velocity
vectors at the beginning and at the end of the arc. If B is a
swing-by planet and C is the following planet in a sequence,
the mismatch of velocity at B between the velocity vector at
the end of the A-B arc (incoming velocity) and the velocity
vector at the beginning of the B-C arc (outgoing velocity)
is partially compensated by assuming that the gravity of the
planet B is steering the incoming velocity. Since the altitude
at which the spacecraft is allowed to swing-by the planet is
limited and the mass of the planet is given, not all incoming
velocities can be naturally rotated to match the outgoing
velocities (i.e., the velocity difference between the velocity
vector at the beginning of the arc following the swing-by
and the velocity of the planet). In this case a propelled
maneuver ∆vi is placed at the pericentre of the swing-
by hyperbola. This combination of powered maneuver and
gravity steering is called powered gravity assist manoeuvre
or powered swing-by.

2) Formulation in Position: The position and velocity of
the first planet in a sequence, say A, are calculated from the
ephemerides for the given vector of discrete times TA =
[TA

1 , TA
2 , ..., TA

i , ...]T . For all the subsequent planets, up the
last one in the sequence, instead, the times are derived from
the phase angles (see Fig. 6). Assuming B is the next planet
in the sequence, following A, and θB1 is the phase angle of B
on its orbit at time TA

1 , the position, velocity and time TB
j of

B are computed for θBj = θB1 +∆θj , with j = 1, ..., nB and
nB = 2π/∆θj . The time corresponding to a given discrete
phase angle can be computed from the time equation in the
form TB

j = f(θBj + 2krπ). Note that, this model is applied
also in reverse from the last planet to the first. In this case the
position and velocity of the last planet are calculated from
the ephemerides given a time vector that spans the desired
arrival temporal window.

A. Generation of the Search Tree

If the vectors of encounter dates for planet A and B
are respectively TA = [TA

1 , TA
2 , . . . , TA

i ]T and TB =
[TB

1 , TB
2 , . . . , TB

j ]T , then the set of possible transfers from
A to B can be represented with a matrix where each
element zAB

ij of the matrix is the cost associated with a
particular TA

i → TB
j transfer. If multiple alternative planets

are available the matrix becomes three dimensional, with the
third dimension containing all possible planets. Note that
each element of the matrix is a node in the tree of decisions
that the Physarum incrementally builds, therefore only the
nodes that the Physarum explores are actually generated and
added to the tree. However, when a planet A the Physarum
generates a new branch towards B all the transfers to B are
evaluated and one selected to be added as a new node to the
tree, the other transfers are stored for later addition of other
nodes.

The cost zAB
ij is the launch excess velocity ∆v0 if planet

A is the departure planet, the powered swing-by cost ∆vi if
A is a swing-by planet, or the sum of ∆vi and the arrival
excess velocity ∆vf if B is the final planet. The cost of a
complete transfer is then the sum of the departure ∆v0 plus
all the ∆vi for all the planetary encounters and ∆vf . In the
Physarum algorithm, the variables L(k)

tot in Eq. (1) and Lij in
Eq. (6) are then replaced by, respectively, ∆v

(k)
tot and zAB

ij .

From a given planet at a particular node, a new planet
is selected with a probability proportional to the inverse of
the difference of the semimajor axis of the new planet with
respect to the current one. Once the costs for the whole
vector TB is available, a transfer is selected, for example
TA
2 → TB

2 , with Eq. (4), where only the costs zAB
ij are used

to compute the fluxes. If ν ∈ U(0, 1) > pram, the algorithm
does not evaluate the cost for a new set of transfer arcs
(i.e., does not build a new branch) but selects an existing
arc among the available possibilities using Eq. (4). The
process is repeated until the final target planet is reached
and a complete decision sequence is built. If, during the
construction of a solution, no transfer arcs can be found that
satisfy the constraints, then the construction is terminated
and an infinite cost (or equivalently a zero probability)
is associated to the resulting partial solution. Eq. (6) was
slightly modified by substituting L

(k)
tot with L

(k)
tot +1 in order

to avoid possible singularities that may appear with the
MGA model.

1) Local Solution Improvement Strategy: In order to
improve the quality of the solutions, a local search procedure
inspired to the 2-opt local search strategy was added to the
algorithm. If s = [A, TA

2 , B, TB
7 , C, TC

12, D, TD
16]

T is a solu-
tion vector, the local improvement checks whether a positive
or negative increment of TA

2 , δT , improves the solution.
If, for example, ∆vtot(A, TA

2 , B, TB
7 , C, TC

12, D, TD
16) >

∆vtot(A, TA
2 + δT,B, TB

7 , C, TC
12, D, TD

16), then TA
2 is re-

placed by TA
2 + δT . The same δT is repeatedly added (or

subtracted) to TA
2 till no improvement is registered. The

process is then applied to TB
7 and the other dates till TD

16, and
repeated backwards from TD

16 to TA
2 . Note that the modified

dates do not necessarily correspond to the discretised phase
angles.



2) Algorithm and problem settings: Along with the
algorithm’s parameters m, ρ, GF , Nagents, pram, rini,
kexplosion and λ introduced in Sec. II, a number of additional
quantities needs to be defined to characterize a particular
instance of the MGA problem. In particular, the departure
planet P0, the upper and lower boundaries on the swing-by
altitude divided by the radius of the planet hlow and hup, the
set of available swing-by planets Ps = {P1, P2, . . . , PNP

},
maximum number of swing-by’s nsmax , maximum number
of resonances resmax, interval of dates defining the launch
window Tlaunch, the interval of dates defining the arrival
window Tarrival, the upper and lower boundaries on the
time of flight ToF low

ij and ToFup
ij for each leg connecting

two planets i and j, the final target planet Ptarget, the grid
spacing in angle ∆θij and the upper and lower boundaries
on launch and arrival velocities, respectively ∆vmax

0 , ∆vmin
0

and ∆vmax
f , ∆vmin

f . The settings of the algorithm for
the cases in this and following section can be found in
Tables V, VI. Planets are identified with the following let-
ters Me(Mercury), V(Venus), E(Earth), M(Mars), J(Jupiter),
S(Saturn), U(Uranus), N(Neptune), P(Pluto). For exam-
ple the sequence EVVEJS means Earth-Venus-Venus-Earth-
Jupiter-Saturn. Parameters m, ρ,GF,Nagents, pram are set
with the same values used for the TSP and MGA 2D
energy model examples (Sec. III and Sec. IV), whilst rini is
increased from 1 to 2, and kexplosion consequently, in order
to have a maximum radius of 5.

Note that, if, in this case, each planet-encounter time pair
was a city in a TSP, each planet could be revisited K times,
NP planets were available per each encounter and each pair
of planets required the evaluation of (NPKNT )

2 transfer
arcs, where NT is the number of discrete encounter dates,
then the total number of transfers to be evaluated would be
KNP (NPKNT )

2. If the transfer arcs were put together in
a sequence, the number of alternative sequences would be
(KNP )

(NPKNT ).

B. Case Study: Mission to Saturn

This test case reproduces the Cassini mission, launched
in November 1997 to Saturn [19]. For this particular example
the maximum number of swing-by’s is 4 and the swing-
by planet can be selected from a set of 4 planets with a
maximum of 2 repeating planets in the same sequence. The
code was implemented in Matlab R⃝ R2010b. The simulation
lasted for approximately 7 hours on an Intel Core (TM) i5-
2500 3.30GHz. Table VII shows the top solutions for the
sequences found by the Physarum: EVVEJS with a cost of
10.0873 km/s, EVJS with a cost of 10.5125 km/s and EVVJS
with a cost of 11.6184.

Table VIII shows a comparison between the best solution
found by the Physarum solver working in only one direction
versus, the best solution found by the Physarum solver
with multidirectional matching ability and the solution found
by the Hidden Genes solver proposed in [5]. This figure
shows that the Physarum D&B is able to find the best
solution. Not only does the multidirectional Physarum yield
the best results but it also provides a more even spreading
of the ∆vi maneuvers. In fact, the solutions found by
incrementally building the sequences in only one direction
(from Earth to Saturn) tend to have low costs at departure

and first swing-by, with a higher cost at the second swing-
by (approximately 2.6 km/s in the example in Table VIII);
this is intrinsically due to the fact that any forward search
algorithm (including deterministic branch and prune ones)
is biased by the heuristic that is used to locally generate
and select new branches. The parallel backward and forward
search with intermediate matching completely removes this
bias.

TABLE V. PROBLEM DEFINITION PARAMETERS

Parameter Value
Set of Available Planets, Ps {V E J S}
nsmax 4
resmax 1
Tlaunch November-December 1997
Tarrival July-December 2007
[∆vmin

0 ,∆vmax
0 ] [3, 5] km/s

[∆vmin
f ,∆vmax

f ] [0, 8] km/s
hlow for {E V J} [0.05 0.05 0.1]
hup for {E V J} [10 10 80]

TABLE VI. LOWER AND UPPER BOUNDARIES ON THE TIME OF
FLIGHT AND ∆θ

Me V E M J S
lb [day] 0 0 300 0 0 0 Me
ub [day] 0 0 1000 0 0 0 Me
∆θ [deg] 0 0 4 0 0 0 Me
lb [day] 0 100 30 300 500 0 V
ub [day] 0 500 500 2000 3000 0 V
∆θ [deg] 0 2 1 2 0.5 0 V
lb [day] 300 100 350 100 800 0 E
ub [day] 1000 200 745 600 1500 0 E
∆θ [deg] 2 1.6 1 2 0.4 0 E
lb [day] 0 0 0 0 0 0 M
ub [day] 0 0 0 0 0 0 M
∆θ [deg] 0 0 2 2 0.5 0.52 M
lb [day] 0 0 0 0 0 1500 J
ub [day] 0 0 0 0 0 2900 J
∆θ [deg] 0 0 0 0 0 0.2 J

VI. CONCLUSIONS

This paper introduced a novel bio-inspired method for
single objective discrete optimization that can effectively
solve MGA trajectory problems. The algorithm was first
applied to the TSP showing good performance if compared
with ACS and other TSP specific algorithms. Furthermore,
it was demonstrated that a multidirectional search is more
efficient than a unidirectional search, when applied to the
solution of reversible decision-making problems. The algo-
rithm was then applied to two instances of the MGAP. In
the first case the proposed algorithm showed the ability to
quickly find optimal solutions for two variants of an Earth
to Jupiter transfer, outperforming a classical unidirectional
branch & cut technique.

In the second case, the algorithm was applied to the
solution of an Earth to Saturn transfer with powered swing-
by’s and compared against a Hidden Genes solver. In this
case, the multidirectional Physarum was able to find the best
result providing a more even spreading of the ∆v maneuvers.



TABLE VII. BEST THREE SEQUENCES FOR THE CASSINI TEST CASE AT 40000 FUNCTION EVALUATIONS

Sequence Cost [km/s] Epoch [MJD2000]
EVVEJS 10.087 [−779.160,−595.763,−181.432,−132.692, 463.099, 2737.50]
EVJS 10.512 [−783.0,−636.054, 296.144, 2765.595]
EVVJS 11.618 [−766.960,−585.780,−164.193, 483.760, 2895.944]

TABLE VIII. CASSINI TEST CASE: COMPARISON BETWEEN UNIDIRECTIONAL, MULTI-DIRECTIONAL Physarum (BOLD) AND HGGA (ITALICS)

E V V E J S
5/11/1997 2/4/1998 25/6/1999 20/8/1999 17/4/2001 25/10/2007

Date 13/11/1997 15/5/1998 4/7/1999 21/8/1999 8/4/2001 1/7/2007
30/11/1997 20/5/1998 26/6/1999 19/8/1999 24/3/2001 1/1/2007

148.3 448.5 55.7 606.8 2382.0
ToF 183.4 414.3 48.7 595.8 2274.4
[day] 171.5 402.0 53.8 582.6 2120.5

Pericentre 2554.8 19597.3 1609.3 4480675.7
Altitude 10484.0 872.2 2832.4 4638454.8
[km] 27471.0 605.3 1810.7 5167772.8

3.2893 0.2944 2.5265 3.3 × 10−4 3.4 × 10−3 4.2009
∆v 3.9747 0.9502 0.9309 9.0 × 10−4 5.6 × 10−4 4.2298

[km/s] 3.7790 2.6330 1.1×10−5 1.4×10−6 1.9×10−4 4.2730

Total 10.3150
∆v 10.0873

[km/s] 10.6850

REFERENCES

[1] S Pessina, S Campagnola, M Vasile. Preliminary Analysis of
Interplanetary Trajectories with Aerogravity and Gravity Assist
Manoeuvres. 54th International Astronautical Congress, Bremen,
Germany, 2003.

[2] A.E. Petropoulos, J.M Longuski, E.P. Bonfiglio. Trajectories to
Jupiter via Gravity Assist from Venus, Earth and Mars. Journal
of Spacecraft and Rockets, 37(6):776–783, 2000.

[3] M Vasile, P. De Pascale. On the Preliminary Design of Multiple
Gravity-Assist Trajectories. Journal of Spacecraft and Rockets,
42(4): 794–805, 2006.

[4] M Ceriotti, M Vasile. Automated MGA Trajectory Planning with an
ACO-inspired Algorithm. Acta Astronautica, 67(910): 1202-1217,
2010.

[5] A Gad, O Abdelkhalik. Hidden Genes Genetic Algorithm for Multi-
Gravity-Assist Trajectory optimization. Journal of Spacecraft and
Rockets, 48(4): 629–641, 2011.

[6] J.A Englander, B.A Conway, T Williams. Automated Interplanetary
Trajectories Planning. AIAA/AAS Astrodynamics Specialist Confer-
ence, Minneapolis, Minnesota, 2012.

[7] A Adamatzky, G.J Martinez, S.V Chapa-Vergara, R Asomoza-
Palacio, C.R Stephens. Approximating Mexican Highways with
Slime Mould. Natural Computing, 10(3): 1195–1214, 2011.

[8] D.S Hickey, L.A Noriega. Insights into Information Processing by the
Single Cell Slime Mold Physarum Polycephalum. UKACC Control
Conference, , Manchester, UK, 2008.

[9] T Nakagaki, H Yamada, A Toth. Maze-Solving by an Amoeboid
Organism. Nature, 407(6803): 470, 2000.

[10] A Tero, K Yumiki, R Kobayashi, T Saigusa, T Nakagaki. Flow-
Network Adaptation in Physarum Amoebae. Theory in Biosciences,
127(2): 89–94, 2008.

[11] A Tero, R Kobayashi, T Nakagaki. Physarum Solver: a Biologically
Inspired Method of Road-Network Navigation. Physica: A Statistical
Mechanics and its Applications, 363(1): 115–119, 2006.

[12] N Aras, BJ Oommen, IK Altinel. The Kohonen Network Incorporat-
ing Explicit Statistics and its Application to the Traveling Salesman
Problem. Neural Networks, 12(9): 12731284, 1999.

[13] M Budinich. A Self-organizing Neural Network for the Traveling
Salesman Problem that is Competitive with Simulated Annealing.
Neural Computation, 8: 416424, 1996.

[14] M Dorigo, LM Gambardella. Solving Symmetric and Asymmetric
TSPs by Ant Colonies. Proceedings of IEEE International Confer-
ence on Evolutionary Computation,622-627, 1996.

[15] T Stuetzle, H Hoos. Max-Min Ant System and Local Search for
the Traveling Salesman Problem. IEEE International Conference on
Evolutionary Computation, 309-314, 1997.

[16] TSPLIB, library of instances for travelling salesman and vehicle
routing problems, Ruprecht Karls Universitaet Heidelberg, URL:
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

[17] X. Zhang, L. Tang. A New Hybrid Ant Colony optimization Al-
gorithm for the Traveling Salesman Problem. Advanced Intelligent
Computing Theories and Applications: With Aspects of Artificial
Intelligence, 148-155, 2008.

[18] Zar Chi Su Su Hlaing, May Aye Khine. Solving Traveling Salesman
Problem by Using Improved Ant Colony Optimization Algorithm.
International Journal of Information and Education, 1(5): 404-409,
2011.

[19] DL Matson, LJ Spilker, JP Lebreton. The Cassini Huygens Mission
to the Saturnian System. Space Science Reviews, 104(1-4): 1-58,
2002.


