Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A multi-objective transmission reinforcement planning approach for analysing future energy scenarios in the GB network

Barnacle, Malcolm and Galloway, Stuart and Elders, Ian and Ault, Graham (2015) A multi-objective transmission reinforcement planning approach for analysing future energy scenarios in the GB network. IET Generation, Transmission and Distribution. pp. 1-9. ISSN 1751-8687

[img]
Preview
Text (Barnacle-etal-IET-GTAD-2015-A-multi-objective-transmission-reinforcement-planning-approach-for-analysis)
IET_GTD.2014.0398.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (710kB) | Preview

Abstract

A multi-objective transmission reinforcement planning framework has been designed to evaluate the effect of applying a future energy scenario to the Great Britain transmission network. This is achieved by examining the identified nondominated set of transmission reinforcement plans, which alleviate thermal capacity constraints, for the multi-criteria problem of five objectives: investment cost, annual constraint cost saving, annual incremental operation and maintenance cost, outage cost and annual line loss saving. The framework is flexible and utilises a systematic algorithm to generate reinforcement plans and alter the associated reinforcements should they exacerbate thermal constraints; hence a pre-determined set of reinforcements is not required to evaluate a scenario. The reinforcements considered are line addition (single-circuit and double-circuit) and line upgrading through reconductoring. The Strength Pareto Evolutionary Algorithm 2 is utilised to explore varying locations, configurations and capacities of network reinforcement. The solutions produced achieve similar cost savings to solutions created by the transmission network owners, showing the suitability of the approach to provide a useful trade-off analysis of the objectives and to assess the network related thermal and economic impact of future energy scenarios. Here the framework is applied to the 2020 generation mix of the Gone Green scenario developed by National Grid.