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ABSTRACT. 

This paper deals with the problem for vibration health monitoring (VHM) in 

structures with nonlinear dynamic behaviour. It aims to introduce two viable VHM 

methods that use large amplitude vibrations and are based on nonlinear time series 

analysis. The methods suggested explore some changes in the state space 

geometry/distribution of structural dynamic response with damage and their use for 

damage detection purposes. One of the methods uses the statistical distribution of state 

space points on the attractor of a vibrating structure, while the other one is based on the 

Poincaré map of the state space projected dynamic response.  

In this paper both methods are developed and demonstrated for a thin vibrating 

plate. The investigation is based on finite element modelling of the plate vibration 

response. The results obtained demonstrate the influence of damage on the local 

dynamic attractor of the plate state space and the applicability of the proposed strategies 

for damage assessment. The approach taken in this study and the suggested VHM 

methods are rather generic and permit development and applications for other more 

complex nonlinear structures. 
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I.  INTRODUCTION AND MOTIVATION 

VHM methods are based on the fact that any changes in a structure in turn 

introduce changes in its vibration response. The problem for damage diagnosis seeks to 

extract information about the presence, the location and the extent of damage from the 

vibration response of the structure. The simplest way to do VHM is using the first 

several natural frequencies of a structure, which are easy to determine from experiment. 

But they are global characteristics and thus, in a lot of cases, may remain unaffected by 

damage and especially by localised damage. Mode shapes are in general more sensitive 

to damage but they are difficult to measure and/or estimate from measured quantities 

[1].  Another alternative are the updating methods, which are based on comparison of 

the measured and the modelled response of a structure. The application of these 

methods is limited by the need of a precise enough model of the structural vibration 

response.  

The above limitations clearly call for an alternative approach, which emerged and 

developed in a recent trend in structural VHM.  It suggests the use of purely data based 

methods which make use of the measured structural vibration response signal [2-7].  

There are different ways to use the measure structural vibration response. A 

straightforward possibility is to use the frequency response functions (FRF’s).  Such 

methods suffer the limitations of the excessively large number of frequency lines in the 

spectrum, which make any further analysis and application very difficult before any 

preliminary data reduction is made [8]. 

Nonlinear dynamics methods present another possibility to use the measured vibration 

response. Observation-based  nonlinear dynamics draws its applications from nonlinear 

signal analysis. Most nonlinear signal analysis methods operate in a phase space.  One 
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of the reasons for using phase space is that nonlinear signals are slightly predictable in 

time, but they have structure which can be observed in phase space. Such methods are 

relatively new and insufficiently explored fro structural dynamics and VHM purposes 

but the existing research proves their capabilities and potential [2-7]. The application of 

such methods is especially appropriate when the structure is subjected to large 

amplitude vibrations, which enhance the influence of any nonlinearities, present in the 

structure, and as a result the structural vibration response is represented by a nonlinear 

signal. Under large amplitude dynamic loads even small changes in the structure (like 

cracks and other local damage scenarios) can have a big effect on the structural response 

in the time domain, which can give indication for the presence of damage. Damage 

which induces very small changes in the natural frequencies and the mode shapes may 

result in phase shifts between the vibration response of the healthy structure and the 

damaged structure in the time domain.  

This study suggests the use of large amplitude vibrations and develops two viable 

methods for damage diagnosis in structures, which are based on nonlinear time series 

analysis.  Here the methods are developed for a thin square plate and their capabilities 

are demonstrated for a thin aluminium plate. 

Thin plate structures have gained special importance and notably increased application 

in recent years. Complex structures such as aircraft, ships, steel bridges, sea platforms 

etc., all use metal plates. Metal plates are subjected to different kind of damage that can 

be due to environmental factors, corrosion/erosion and/or collision. The presence of 

crack and other damage can alter considerably the dynamic behaviour of a thin plate. A 

number of authors suggest the use of nonlinear methods to analyse thin plate vibrations 

especially in the presence of damage [9,10].  In many applications vibrating plates are 
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subjected to dynamic loading leading to large amplitude vibrations. In such cases the 

small deflection plate theory cannot assure the adequate simulation of the plate response 

and therefore the large deflection plate theory, where the geometrical nonlinearities are 

included should be used [11,12]. On the other hand, large amplitude vibrations can 

allow small defects (which will not influence the response in the case of small 

deflections in the plate) to affect substantially the dynamic behaviour of the plate and in 

this way to be easily identified. For the above reasons the geometrically non linear 

version of the so called Reisner-Mindlin plate theory (the first order plate theory) was 

used to model the plate behaviour [13,14]. It is out of the scope of this paper to 

concentrate on the details of this theory and on the method of the solution of the 

equation of motion. The governing equations and the idea of the used method for 

rectangular plates are presented very briefly in the Appendix. 

It has been found in several studies that the lower natural frequencies of plates 

might be insensitive to damage [9,15]. This paper also explores the sensitivity of the 

first several natural frequencies of the plate to damage but it only confirms the previous 

findings that the changes in the lower natural frequencies of the plate considered are 

insufficient to be used as damage indicators.  The paper then goes on and examines the 

difference between the two types of vibration responses (in undamaged state and in the 

presence of damage) in a state space to extract features that can be used for damage 

detection and localisation.   

The next paragraph introduces the idea of the state space approach and its use for 

damage detection. Paragraph three is dedicated to the two damage diagnosis methods. 

The specific case of a thin square aluminium plate is considered next.   Paragraph five 



 6 

introduces and discusses the results of the numerical experiments. The paper finishes 

with some conclusions.  

 

II.  THE STATE SPACE APPROACH AND DAMAGE DETECTION 

The concept for state (phase) space representation and reconstruction stems from 

the dynamical system approach for analysis of non-linear time series. The main idea of 

this approach is to equip the investigator with tools for analysis and modelling of a 

system from observed time dependent variables. The application of such an approach 

for a vibrating system will give us the possibility to reconstruct its dynamic behaviour 

from its measured vibration response. The application of state space reconstruction is 

especially appropriate for nonlinearly vibrating structures, when their vibration response 

is represented by a nonlinear signal. Nonlinear signals have slight predictability in the 

time and in the frequency domain. The state space reconstruction for a nonlinear signal 

is like the Fourier transform for linear signal processing- it represents the signal in a 

new space where it has structure and its structure is easily observable [16,17]. A 

vibrating structure can be considered as a dynamic system whose behaviour is described 

by the following system of differential equations  

 

F(x(t))
x

=
dt

d
                                                                                                          (1) 

 

In the above relation the function F(.) and the original system space defined by the 

vector x are not known. The state (phase) space is an alternative space, which can be 

reconstructed from the measured vibration response, and in which the dynamics of a 
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vibrating  system can be completely reconstructed from measurements [16,17]. So the 

question is how to reconstruct such a state space from the structural vibration response 

which is normally represents by a single scalar time dependent variable. Obviously a 

vibrating structure is a much more complex system and cannot be represented in a one-

dimensional space. Takens theorem [16] gives the answer to this question. The theorem 

proves that if we are able to observe a single scalar quantity s(n), n=1,2…. of some 

vector function of the dynamic variable x, ))((()( nsns xg= ,  then the dynamics of the 

system can be unfolded in a space made out of new vectors with components consisting 

of s(n). These new vectors y  

 

)])1((),...,(),([) TmnsTnsnsn −++=y(                                                                (2) 

 

composed simply of time lags of the observation define the motion in an m-dimensional 

Euclidean space. In particular it is shown that the evolution in time of the points 

)1()( +→ nn yy  follows that of the unknown dynamics ( ) ( 1)n n→ +x x . This procedure 

converts the scalar measured series s(n) into a vector series y(n). The new space defined 

by the vector y is the state space that we were looking for. T and m are known as the 

time delay and the embedding dimension of the new state space. They have to be 

properly chosen so that the dynamics of our original system can be completely 

reconstructed in the state space y. A proper time lag can be chosen using the first 

minimum of the average mutual information while a sufficient embedding dimension m 

can achieved by following the false nearest neighbour approach [16]. The choice of 

embedding parameters is out of the scope of this paper and is explained in detail in e.g. 

[18]. For the purpose of this investigation, which are restricted to damage detection 
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rather than a full reconstruction of the vibrating structure, a dimension m=2 is used 

assuming that it will preserve some of the properties of the vibrating system and some 

changes introduced by damage will be possible to observe in it. The choice of a proper 

time lag is discussed later. 

Once proper embedding dimension and time lag are chosen, the next question is 

how to characterise our vibrating structure in the new state space so that we can look for 

changes caused by damage.  

Since the reconstruction of the mapping relation ))(()( tTt yGy =+  is not possible 

for most dynamic systems the alternative of studying its attractor is chosen. The 

attractor is the invariant subset towards which the trajectories of the system converge. It 

can be characterised by its invariants- the Lyapunov spectrum, the entropy and different 

dimensions. It can be argued and there is much evidence that these characteristics 

change with the introduction of damage [2,6,7,19]. But these invariants are difficult to 

determine from measured data [16,17,19]. An alternative way which overcomes this 

difficulty is to study the geometry or the distribution of points on the attractor [16]. It 

can be proven and there is enough evidence that the distribution of points on the 

attractor and its geometry are rather sensitive to even small changes in the system 

including damage [4-7].  

In general damage detection can be performed by monitoring certain parameters 

that change with the introduction and the growth of damage. So the question is to find 

such parameters. In this study the authors suggest the use of damage sensitive features 

which are derived using the distribution of state space points on the attractor. The next 

paragraph introduces the two methods and the suggested damage features.  
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III.  THE PROPOSED METHODS 

This piece of research concentrates on studying the distribution of points on the 

attractor and analysing the effect of damage on some of its properties. The first method 

suggests to analyse the statistical distribution of points on the attractor, while the other 

alternative looks at their Poincaré map.   

III.1. Statistical distribution of points on the attractor and the effect of 

damage on it.   

This method suggests to study the statistical distribution of points on the attractor 

and use it to extract damage sensitive features. One of the advantages of using these 

statistical characteristics is that they are easy to determine from measured data. Another 

advantage is that in general the statistical characteristics of a nonlinear system are more 

robust to noise than any deterministic characteristics. The determination of any 

deterministic characteristics ( invariants) of a nonlinear signal from observations  is very 

difficult (if possible at all) and the estimated characteristics could be quite imprecise 

[16,17]. 

As it was mentioned above, a two-dimensional state space is used in this 

investigation. The time lag T∆  was found using the first minimum of the average 

mutual information in order to generate a number of “uncorrelated” points in the state 

space [16-18]. To study the attractor one needs a long enough signal which will exclude 

the transient and short term behaviour and allow one to concentrate on the long term 

behaviour of the system. For a vibrating system one measures acceleration, velocity or 

displacement signals. Any of these quantities can be used to obtain a sample of state 
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space points. For the purposes of this method we use acceleration signals only because 

acceleration is the most common quantity to measure on a vibrating structure. Suppose 

one measures a long enough acceleration signal. It can be represented by an  

acceleration vector a as follows: 

 

ni

Ttt

aaatatata

ii

T
n

T
n

,...,3,2

],...,,[)](),....,(),([

1

2121

=

+=

==

−

a

                                               (3) 

 

where a(ti) are the measured accelerations in the time moments ti, i=1,2….,n, n is 

large enough, the superscript T[...]  stands for transpose and T  is the time lag found as 

explained above.  

From a vector a one can obtain n-1 state space points: 
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A set of N trajectories yk, k=1,2,…N, is then randomly chosen on the response 

attractor and NB nearest neighbours are found for each trajectory in the sense of  

Euclidean distance, i
qy , i=1,2,…,N, q=1,2,…NB. This set is denoted by Yn, 
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yY . The set Yn, n=1,2,…,N.NB =M is used to characterise the 

attractor of the response signal. 

Now that we have obtained the set of vectors Yn the next task is to characterise the 

statistical distribution of these points. One way to do this is to estimate some statistics 
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of the obtained sample Yn. Some of our and other authors’ previous research has shown 

that certain statistical characteristics of this distribution might be sensitive to damage 

[2,3,6,7,19]. For instance the variance and the skewness have been found to show 

sensitivity to damage in some cases, while other statistical moments turned less 

sensitive [2,6].  For a multidimensional distribution these characteristics can be defined 

by the following scalar quantities, which are suggested in [20]  
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where M is the number of points Yn, n=1,...,M, Y is the sample mean vector and S is the 

sample covariance matrix. Instead of using the values for σ and s one can introduce 

relative changes compared to the non damaged case. These characteristics are 

introduced below: 
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The above quantities can be used as damage features. The multivariate statistics 

(5) as well as the damage features (6) can be calculated for each measured time domain 

signal and they are expected to give reliable results provided the signal is long enough. 

These quantities will characterise the local dynamic state of the structure close to the 

point on the structure where the measurement is taken. Here and thereafter local refers 

to the location on the structure where the measurements are taken. We shall call σ    and 

 s   local statistics and Fσ and Fs−   local damage features. The local statistics and the 
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local features will give information about the local distribution of state space points and 

the local damage state of the structure close to the measurement point. If one has more 

than one measurement points, the above characteristics can be then calculated using all 

the signals coming from different measurement points. The resulting statistics (5) will 

then contain information about the distribution of state space points for the whole 

structure and the damage features (6) will characterise the damage state of the whole 

structure.  We shall call these global statistics and global damage features respectively. 

Global here and thereafter refers to the structure. The global features will give 

information about the damaged state of the whole structure. When damage is introduced 

in the structure it is expected to affect the local damage features calculated for the 

measurement points close to the damage more than the global features which are 

calculated for all the measurement points on the structure. So the local damage features 

might be used to localise the damage while the global features can be used as global 

damage features are better to use to detect the presence of damage in the whole 

structure.  

III.2. The Poincaré map   

Another way to analyse the nonlinear time domain vibration response in a state 

space is to use its Poincaré map. The second method suggested here utilises the 

Poincaré map to extract damage sensitive features. 

A standard technique in dealing with phase space of periodically driven oscillators 

is to inspect the projection ,
dw

w
dt

 
 
 

 whenever t is a multiple of the period Τ0=2π/ω and 

w is the transverse displacement of the plate. Here ω can be the frequency of the 

excitation of the mechanical system, an eigen frequency of the structure or its multiple, 
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T0  is a period of the forcing, an eigen period of the system or its multiple. The result of 

inspecting the phase projection only at specific times t=kT0 is a sequence of dots, 

representing the so-called Poincaré map. The steady-state converging trajectories, which 

represent the attractor, are usually formed in the phase space and in many cases of 

nonlinear systems they are very sensitive to any changes in the system. 

The idea of the approach presented here is based on the following considerations: 

 

1. A Poincaré map can be interpreted as a discrete representation of the 

dynamic system in a state space which is one dimension smaller than the 

original continuous space of the dynamic system. Since it preserves many 

properties of periodic and quasi-periodic orbits of the original system and 

has a lower dimension, it is often used for analyzing the original system. 

2. The Poincaré maps contain data for the displacements and the velocities of 

the structure in a compact form and since these two parameters are expected 

to be sensitive to damage, these diagrams can be used to detect damage.  

 

When the plate has undergone substantial damage and it is subjected to large 

amplitude nonlinear vibrations, this leads to changes in the attractor of the vibrating 

system in the phase space and then the application for damage assessment purposes 

becomes obvious. Even when the damage is small, and the responses of the damaged 

and the healthy structure are close to each other, the points from the Poincaré map are 

easier to use for comparison and identification purposes because the number of this 

points is not comparable to the enormous number of points in the time-history diagrams.  

Accordingly one can introduce the following damage index for the i-th node: 
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where, i=1,2…Nnodes, Nnode  is the number of nodes,  Np  is the number of points in the 

Poincaré map and ( , ) and ( , )u u d d
ij ij ij ijw w w w� �  denote the j-th point in the Poincaré maps in the 

undamaged and in the damaged   state respectively.  

A small (close to 0) damage index will indicate no damage, while a big damage 

index will indicate the presence of a fault at the corresponding location. The above 

damage index depends on the location of the point on the plate and consequently it is a 

function of the plate coordinates x and y. One can expect that the maximums of the 

surface d
iI  defined by equation (7a) will represent the location of damage in the 

structure ),( dd yx , i.e. }{max),( d
i

i
dd

d
IyxI =  

It is easy to notice that  and u d
i iS S  (7 b,c) represent the lengths of the lines formed 

by connecting the dots on the Poincaré maps for the non-damaged and the damaged 

plate for i-
th

 node, respectively. Therefore the damage index is defined as the relative 

difference between these two lengths. The logical expectations are that:  

1) Since the fault influences the vibration response of the plate it will introduce 

changes in the Poincaré map. The differences in Poincaré map of the healthy and 

damaged plates will be indicative for the presence of damage.  
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2) At the nodes close to the damaged area the introduced damage index  d
iI  (7 a) 

will be larger than the index for points which are far from the damaged zone. 

This can   be used to localize the detected damage. 

It should be noted that the criterion (18) includes an integral measure of the dynamic 

behaviour of the structure in the total time interval. We would like to mention that our 

attempts to apply a simpler criterion, e.g. a criterion based on distance between the 

Poincaré map dots for the damaged and the undamaged state, i.e. : 

2 2

, , , ,

1 , ,

;
p

u d u dN
i j i j i j i j

i u u
j i j i j

w w w w
S

w w=

    − − 
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∑
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�
 i=1, 2,   ,Np 

showed completely inability to predict the damage as well as its location. 

 

IV.  THE CASE STUDY 

In this study the methods introduced above are demonstrated for  a thin square 

clamped aluminium plate with dimensions 500mm –500mm and constant thickness t = 

6mm as shown on Figure 1. The following material characteristics were used:  Young 

modulus E= 7.10
10 

N/m
2
, Poison coefficient ν=0.34, density ρ= 2778 kg/m

3
. A finite 

element model of the plate was used to determine its time domain vibration response. 

Two cases of damage were considered: - A) central damage- thickness reduction 

located in a small area located in the central part of the plate (see Fig. 1); B) side 

damage- thickness reduction in a small area close to the left lower corner of the plate as 

shown in Fig. 1. Two damage levels are introduced for both damage cases. In the first 

damage level the thickness in the corresponding damage zone is reduced to 4mm and in 
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the second damage level the thickness in the corresponding damage zone is reduced to 

3mm.  

The plate was subjected to a harmonic loading uniformly distributed on the plate 

surface with different frequencies close to one of the plate’s natural frequencies. Cases 

when the frequency of excitation is close to one of the first natural frequencies of the 

systems are interesting and important for this study of a nonlinear system because they 

often lead to large amplitude vibrations and may result in complex phenomena like 

beating, quasi-periodic or chaotic vibrations [21,22] . In such regimes vibrating systems 

are usually quite sensitive to even small changes in the geometry and the physical 

properties of the structures and this is therefore expected to enhance their sensitivity to 

damage, even though the changes in the natural frequencies might be negligible. 

Numerical experiments were carried out for different values of the excitation 

frequencies. In the case of central defect (case A) the excitation frequency was chosen 

equal to ωe=1000 rad/s. In order to show the applicability of the methods for higher 

frequencies for the case B the excitation frequency was ωe=2000 rad/s. (The first two 

natural frequencies of healthy plate are ω1=1326.32 rad/s, ω2=2700.3 rad/s ) The 

amplitude of the harmonic loading was 6 N.  

The aim of the following numerical examples performed is to test the suggested 

procedures to detect and localise damage in the plate. 

V. SOME RESULTS    

In this paragraph some result for the detection and the localisation of the two 

damage scenarios described above -the central and the side defect- are discussed. 

First of all the sensitivity of the first ten natural frequencies of the plate was tested. 

Our results showed that in this particular case both defects introduce very small changes 
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in the first 10 natural frequencies of the plate. The differences between the frequencies 

of the intact and the damaged plate do not exceed 2 %. These results were 

experimentally confirmed as well. So in this particular case there is obviously a need for 

an alternative method. 

Let us first have a look at the time histories of the plate response for the non 

damaged and the damaged cases. Figures 2 and 3 give parts of the time histories for the 

case of central defect and side defect, respectively, compared to those for the non 

damaged plate. The figures present the time histories for the case of no damage and for 

the two damage levels. It can be observed that the applied load leads to large amplitude 

vibrations of the plate. Due to the fact that the excitation frequency is close to one of the 

first natural frequencies of the plate a beating phenomenon occurs.  It can be 

appreciated from Figures 2 and 3 that the time histories undergo significant changes 

with damage. As it is expected the differences for case A of central defect are bigger 

than the differences for case B of side defect. It can be seen that close to the beginning 

(t=0) the responses almost coincide (especially for the case B) but then the phase shifts 

and the differences between the responses increase. For damage level 2 the time 

histories go still further apart. Another conclusion that can be made from Figures 2 and 

3 is that the response signals, especially those which correspond to a damage state, look 

complex and nonlinear and they are not made of single frequency harmonics. The 

representation of these signals in the frequency domain confirms this observation. This 

justifies our motivation to use nonlinear signal analysis methods for the purposes of this 

investigation. 

The first method suggested proposes the use of two damage indexes to detect the 

presence of damage. These indexes are based on the change of two statistics of the 
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distribution of points on the attractor. Thus if there is no change in the damage state 

these indexes should be close to 0 while if there is a change in the damage state of the 

plate these indexes are expected to increase. In this numerical example it was assumed 

that measurements are taken in a net of 16 equally distributed points that cover the 

surface of the plate. The global indexes were calculated using the signals obtained in all 

the 16 points, while the local indexes were calculated for the signals obtained in each 

one point. Since we don’t assume any preliminary information about the location of 

damage we shall first use the global indexes to test their use for detection purposes. 

Table 1 below gives the results for the global indexes for both damage types for the two 

damage levels. It can be noticed that both damage indexes undergo a certain change, 

which is smaller for the first damage level and it goes up for the second damage level. 

The change, especially for the first damage level, is not tremendous, but one should 

keep in mind that these are the global indexes, which will give the relative change in the 

statistic for all the measurement points. The signals from points close to the damage will 

change more than the signals measured in points further from the damage location and 

therefore some of the differences that contribute to the above damage indexes will be 

close to 0 and/or very small.  

The local indexes can also be used to detect damage but they are expected to give 

information about the damage location as well. Figures 4-8 show the changes in the 

local damage indexes for the whole plate. Figures 4 and 5 detail the local skewness- and 

variance-based indexes for central defect for both damage levels. It can be noted that the 

skewness-based  index gives a somewhat better performance in terms of localisation- it 

localises the defect more precisely. While the variance-based indexes are less sharp and 
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the defect zone is a bit smeared which makes difficult to identify the exact localisation 

of the damaged zone. 

A similar effect was observed for the case of the side defect as well and the next 

graphs detail the performance of the skewness index only.   Figure 6 gives the skewness 

index Fs for the case of side defect B) for both levels. From figures 4,5 and 6 it can be 

appreciated that the damage can be localised using the local indexes and that the indexes 

increase with the increase of damage- they become higher for level 2. Figures 7 and 8 

give the local skewness indexes Fs for the cases of central defect A) and side defect B) 

respectively, for both damage levels, from another perspective as projected on the plate. 

It can be appreciated that the skewness-based index, gives quite sharp and precise 

localisation of the damage for both damage levels. 

The second method suggests the use of Poincaré maps and the damage index d
iI  

(equation 7 a) is used to detect and localise damage. To visualize the damage index and 

to set a threshold for detecting the damage we use the so-called contour plots. A contour 

plot is a graphical technique for representing a 3-dimensional surface by plotting 

constant z slices, contours, on a 2-dimensional plane. That is, given a value for z, lines 

are drawn that connect the (x,y) coordinates where that z value occurs. The contour plot 

is an alternative to a 3-D surface plot.  

The influence of damage on Poincaré maps can be seen in Figures 9 and 10. The 

influence of the central damage (case A) is bigger than the influence of the side defect 

(case B). The introduced damages do not change the type of the Poincaré section 

(circle) they only influence the length of the curves formed by the Poincaré dots. It can 

be observed that the influence of the higher level damage (hdamaged =3 mm) on the 
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Poincaré maps is a little bigger compared to the influence of the lower level damage 

(hdamaged =4 mm). 

Then the damage index  d
iI was calculated for the points from the Poincaré maps 

for all the nodes and its contour plots were obtained. Figure 11 details the contour plots 

of  d
iI  for central damage A) for both damage levels. As can be seen from this plots 

damage A) can be detected and localised quite precisely especially at the second 

(higher) damage level. The value of the damage index for the second damage level is 

bigger than the one corresponding to the first damage level . Figure 12 presents similar 

contour plots for the case of side damage B). The figures detail both damage levels. It 

can be observed that the plot for the second damage level identifies quite precisely the 

position of the defect in spite of the fact that the absolute values of the differences in 

displacements and velocities of the two responses at the nodes of the damaged area are 

small. The localisation of the damage for the first damage level is not absolutely precise 

but it is sufficient for many applications.  

 

VI. CONCLUSIONS 

(1) Two viable methods for damage detection and localisation are suggested 

in the paper which are based on a state space representation of the time 

domain structural response.  

(2) In this study the methods are developed for a thin rectangular plate. The 

results are based on a FE simulation of the plate response. The generality 

of both methods permits their development and potential application for 

other more complex structures with measured data.  
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(3) Both methods demonstrate quite good abilities to detect and localise 

damage in the plate. The noise sensitivity of the methods and their 

capabilities for real measurements still have to be tested.   
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APPENDIX.  

Equations of motion of the plate 

The geometrically non-linear version of the so called Raisner-Mindlin plate theory was 

used to describe the dynamic plate behaviour. This theory takes into account the 

influence of the shear stress and angular rotations on the plate behaviour and gives more 

adequate results than the classical one especially in the case of thicker plates or when 

higher frequencies are included into vibrations [13,14]. 

The equations of motion, according to this theory are as follows: 
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Here Nx, Ny and Nxy are the stress resultants in the mid-plane of the plate, Mx, My and Mxy 

are the stress couples,  Qx and  Qy are the transverse shear stress resultants,  u(x,y,t) and  

v(x,y,t) are the in-plane displacements, ( ), ,w x y t  is the transverse displacement, 

( ) ( ), , , , ,x yx y t x y tψ ψ  are the rotation angles, h is the plate thickness, c1 and c2 are 

damping coefficients and ρ is the density of the plate material.  
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In the present work only fully clamped and in-plane fixed plates are considered, 

which means that all displacements u, v and w and angular rotations yandxψ ψ  are 

zero along the boundaries. 

The pseudo-load mode superposition method (PLMS) [11,12,21] is applied  to 

solve the problem for  nonlinear vibration of plates. The widely accepted assumption 

that mid-plane inertia effects are negligible is assumed, i.e. 0x yhu huρ ρ= =�� ��  . The 

finite element method is used to discretize the plate equations with respect the space 

variables and by using the PLMS they are transformed in the frequency domain. Then 

an iterative procedure with respect to time is applied for the solution of the obtained 

system of ordinary differential equations. It is out of the scope of this paper to 

concentrate on the details of solution method and the reader is referred to the above 

mentioned papers [11,12,21] where  the method is applied for undamaged plates. 
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TABLE AND FIGURE CAPTIONS 

 
Table 1. Change in the damage indexes in per cent for the two damage levels in the two 

damage zones 

 
Figure 1.  Plate and defects 

 

 

Figure 2. Time histories for central defect (Case A) black line –undamaged plate; blue 

line – level 1, red line -level 2. ;. Excitation frequency ωe=1000 rad/s, p = 6 N 

 

 

Figure 3.  Time histories for side defect (case B) black line –undamaged plate; red 

line -level 1; blue line –level 2. Excitation frequency ωe=2000 rad/s, p = 6 N 

 
 
Figure 4.  Local damage index Fs for central defect (a) level 1, (b) level 2 

 

 

Figure 5. Local damage index Fσ for central defect (a) level 1, (b) level 2 

 
 
Figure 6. Local damage index Fs for side defect (a) level 1, (b) level 2 

 
 
Figure 7.        Another perspective of the local index Fs for central defect (a) level 1, (b) 

level 2 

 

 

Figure 8. Another perspective of the local index Fs for side defect (a) level 1, (b) 

level 2 

 

 

Figure 9.  Poincaré map of the centre of the plate in the case of central damage . 

Black dots – undamaged plate. Blue dots – level 1, Red dots – level 2. 

 
Figure 10.  Poincaré map of the centre of the plate in the case of side damage. Black 

dots – undamaged plate. Blue dots – level 1, Red dots – level 2.. 

 

 

Figure 11.  Contour map of damage index I
d 
for central damage (Case A), (a) level 1; 

(b) –level 2 

 

 

Figure 12  Contour plots for the case of side damage. (a) -level 1,(b)- level 2 
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Centre damage A) Left end damage B)  

Fs Fσ Fs Fσ 

Level 1 10.2 8.7 9.0 8.6 

Level 2 14.6 12.3 12.7 11.9 

 

Table 1. Change in the damage indexes in per cent for the two damage levels in the two 

damage zones 
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Figure 1. Plate and defects 
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Figure 2. Time histories for central defect (Case A) black line –undamaged plate; blue 

line – level 1, red line -level 2. ;. Excitation frequency ωe=1000 rad/s, p = 6 N 
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Figure 3. Time histories for side defect (case B) black line –undamaged plate;; blue line 

–level 1, red line -level 2; Excitation frequency ωe=2000 rad/s, p = 6 N 
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Figure 4. Local damage index Fs for central defect (a) level 1, (b) level 2 
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Figure 5. Local damage index Fσ for central defect (a) level 1, (b) level 2 
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Figure 6. Local damage index Fs for side defect (a) level 1, (b) level 2 
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Figure 7. Another perspective of the local index Fs for central defect (a) level 1, (b) 

level 2 

  

 

(a) (b) 
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Figure 8. Another perspective of the local index Fs for side defect (a) level 1, (b) level 2 
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Figure 9. Poincaré map of the centre of the plate in the case of central damage . Black 

dots – undamaged plate. Blue dots – level 1, Red dots – level 2.. 
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Figure 10. Poincaré map of the centre of the plate in the case of side damage. Black 

dots – undamaged plate. Blue dots – level 1, Red dots – level 2.. 
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Figure 11. Contour map of damage index I

d 
for central damage (Case A), (a) level 1; 

(b) –level 2 
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Figure 12. Contour plots for the case of side damage. (a) -level 1,(b)- level 2
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