Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Thermal quenching mechanism of photoluminescence in 1.55 µm GaInNAsSb/Ga(N)As quantum-well structures

Sun, H.D. and Calvez, S. and Dawson, M.D. and Gupta, J.A. and Aers, G.C. and Sproule, G.I. (2006) Thermal quenching mechanism of photoluminescence in 1.55 µm GaInNAsSb/Ga(N)As quantum-well structures. Applied Physics Letters, 89 (10). ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The authors report the temperature dependent photoluminescence characteristics of a series of GaInNAsSb/Ga(N)As double quantum wells which all emit at 1.5-1.55 µm at room temperature and whose design is such that the quantum wells have nominally identical valence band profiles but show different confinement depth in the conduction band. The photoluminescence quenching at high temperature demonstrates a thermal activation energy independent of the conduction band offset and can be most plausibly attributed to the unipolar thermalization of holes from the quantum wells to the barriers. This effect will intrinsically limit the flexibility of heterostructure design using GaInNAs(Sb), as it would for any other material system with small valence band offset.