Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy

Wright, Amanda and Burns, David and Patterson, B.A. and Poland, S. and Valentine, G.J. and Girkin, J. (2005) Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microscopy Research and Technique, 67 (1). pp. 36-44. ISSN 1059-910X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report on the introduction of active optical elements into confocal and multiphoton microscopes in order to reduce the sample-induced aberration. Using a flexible membrane mirror as the active element, the beam entering the rear of the microscope objective is altered to produce the smallest point spread function once it is brought to a focus inside the sample. The conventional approach to adaptive optics, commonly used in astronomy, is to utilise a wavefront sensor to determine the required mirror shape. We have developed a technique that uses optimisation algorithms to improve the returned signal without the use of a wavefront sensor. We have investigated a number of possible optimisation methods, covering hill climbing, genetic algorithms, and more random search methods. The system has demonstrated a significant enhancement in the axial resolution of a confocal microscope when imaging at depth within a sample. We discuss the trade-offs of the various approaches adopted, comparing speed with resolution enhancement.