Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

From parametricity to conservation laws, via Noether's Theorem

Atkey, Robert (2014) From parametricity to conservation laws, via Noether's Theorem. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, New York, pp. 491-502. ISBN 9781450325448

Text (Atkey-POPL2014-From-parametricity-to-conservation-laws-via-noethers-theorem)
Atkey_POPL2014_From_parametricity_to_conservation_laws_via_noethers_theorem.pdf - Accepted Author Manuscript

Download (304kB) | Preview


Invariance is of paramount importance in programming languages and in physics. In programming languages, John Reynolds' theory of relational parametricity demonstrates that parametric polymorphic programs are invariant under change of data representation, a property that yields "free" theorems about programs just from their types. In physics, Emmy Noether showed that if the action of a physical system is invariant under change of coordinates, then the physical system has a conserved quantity: a quantity that remains constant for all time. Knowledge of conserved quantities can reveal deep properties of physical systems. For example, the conservation of energy is by Noether's theorem a consequence of a system's invariance under time-shifting. In this paper, we link Reynolds' relational parametricity with Noether's theorem for deriving conserved quantities. We propose an extension of System Fω with new kinds, types and term constants for writing programs that describe classical mechanical systems in terms of their Lagrangians. We show, by constructing a relationally parametric model of our extension of Fω, that relational parametricity is enough to satisfy the hypotheses of Noether's theorem, and so to derive conserved quantities for free, directly from the polymorphic types of Lagrangians expressed in our system.