Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Does anisotropy promote spatial uniformity of stent-delivered drug distribution in arterial tissue?

McGinty, Sean and Wheel, Marcus and McKee, Sean and McCormick, Christopher (2015) Does anisotropy promote spatial uniformity of stent-delivered drug distribution in arterial tissue? International Journal of Heat and Mass Transfer, 90. pp. 266-279. ISSN 0017-9310

Text (McGinty-etal-IJHMT-2015-Does-anisotropy-promote-spatial-uniformity-of-stent-delivered-drug)
McGinty_etal_IJHMT_2015_Does_anisotropy_promote_spatial_uniformity_of_stent_delivered_drug.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview


In this article we investigate the role of anisotropic diffusion on the resulting arterial wall drug distribution following stent-based delivery. The arterial wall is known to exhibit anisotropic diffusive properties, yet many authors neglect this, and it is unclear what effect this simplification has on the resulting arterial wall drug concentrations. Firstly, we explore the justification for neglecting the curvature of the cylindrical arterial wall in favour of using a Cartesian coordinate system. We then proceed to consider three separate transport regimes (convection dominated, diffusion dominated, reaction dominated) based on the range of parameter values available in the literature. By comparing the results of a simple one-dimensional model with those of a fully three-dimensional numerical model, we demonstrate, perhaps surprisingly, that the anisotropic diffusion can promote the spatial uniformity of drug concentrations, and furthermore, that the simple analytical one-dimensional model is an excellent predictor of the three-dimensional numerical results. However, the level of uniformity and the time taken to reach a uniform concentration profile depends on the particular regime considered. Furthermore, the more uniform the profile, the better the agreement between the one-dimensional and three-dimensional models. We discuss the potential implications in clinical practice and in stent design.