Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Fast implementation of singular spectrum analysis for effective feature extraction in hyperspectral imaging

Zabalza, Jaime and Ren, Jinchang and Wang, Zheng and Zhao, Huimin and Wang, Jun and Marshall, Stephen (2015) Fast implementation of singular spectrum analysis for effective feature extraction in hyperspectral imaging. IEEE Journal of Selected Topics in Earth Observation and Remote Sensing, 8 (6). pp. 2845-2853. ISSN 1939-1404

[img]
Preview
Text (Zabalza-etal-JSTEORS2014-effective-feature-extraction-in-hyperspectral-imaging)
Zabalza_etal_JSTEORS2014_effective_feature_extraction_in_hyperspectral_imaging.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

As a recent approach for time series analysis, singular spectrum analysis (SSA) has been successfully applied for feature extraction in hyperspectral imaging (HSI), leading to increased accuracy in pixel-based classification tasks. However, one of the main drawbacks of conventional SSA in HSI is the extremely high computational complexity, where each pixel requires individual and complete singular value decomposition (SVD) analyses. To address this issue, a fast implementation of SSA (F-SSA) is proposed for efficient feature extraction in HSI. Rather than applying pixel-based SVD as conventional SSA does, the fast implementation only needs one SVD applied to a representative pixel, i.e., either the median or the mean spectral vector of the HSI hypercube. The result of SVD is employed as a unique transform matrix for all the pixels within the hypercube. As demonstrated in experiments using two well-known publicly available data sets, almost identical results are produced by the fast implementation in terms of accuracy of data classification, using the support vector machine (SVM) classifier. However, the overall computational complexity has been significantly reduced.